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Abstract

In these notes for the proceedings of the “Journée Équations aux Dérivées Partielles”, we survey
some of the recent progress in and the interplay of unique continuation, approximation and some
related nonlocal inverse problems. In particular, we discuss the qualitative and quantitative global
unique continuation properties of the fractional Laplacian and its Runge approximation properties.
We explain how this leads to surprising results on the inverse problems for the associated operators.

1. Introduction

In this survey we discuss the interplay of unique continuation and approximation for the fractional
Laplacian and related nonlocal equations. As a main application we discuss the fractional Calderón
problem, which is a nonlocal inverse problem which had been introduced in [23]. The fractional
Laplacian is here regarded as a prototypical nonlocal operator which appears naturally in many
applications including thin free boundary value problems, fluid mechanics, relativistic quantum
mechanics and the description of dislocations. There is a vast literature on it and on equations
involving it; we refer to [15] and the references therein. In our situation of uniqueness and ap-
proximation problems the nonlocality of the fractional Laplacian gives rise to striking rigidity and
flexibility properties which we will discuss in the sequel.

2. Global unique continuation and Runge approximation

Analytic functions enjoy very strong rigidity properties which are for instance reflected in the
maximum principle or the identity theorem. It is natural to ask for which type of other function
classes some of these properties persist. One property which can be meaningfully extended to the
setting of more general equations is the unique continuation property. It can be phrased in different
versions. For instance, the weak unique continuation property addresses the following question:

Let u be a solution to some equation P (x,D)u = 0 in a domain Ω for a differential
or pseudodifferential operator P (x,D). Assume that u vanishes in an open subset
Ω′ ⊂ Ω. Does this already imply the vanishing of u in the whole of Ω?

A prototypical class of equations for which this holds are for instance second order elliptic equa-
tions with sufficiently regular metrics, potentials and gradient potentials [31]. Similarly, it is also
interesting to study the strong unique continuation property:

Let u be a solution to some equation P (x,D)u = 0 in a domain Ω for a differential
or pseudodifferential operator P (x,D). Assume that u vanishes of infinite order (in a
weak sense) in x0 ∈ Ω. Does this already imply the vanishing of u in the whole of Ω?

Keywords: unique continuation, Runge approximation, fractional Calderón problem.
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Again, typical examples of equations for which this is true are sufficiently regular, second order
elliptic equations [31].

In addition to its intrinsic interest as capturing the rigidity properties of an equation, the unique
continuation property has a number of ramifications in other areas: The question of weak unique
continuation is for instance closely linked to uniqueness and stability properties of Cauchy prob-
lems (see [48, 49] for reviews on this and the unique continuation property for various equations).
Moreover, it plays an important role in control theory [53], for instance, in the context of ap-
proximate controllability. Both the strong and the weak unique continuation property also encode
relevant information on the nodal domain of a function and are thus of interest in the study of
PDE and free boundary value problems [30, 46, 47].

In the sequel, we are concerned with investigating global versions of these questions and some
of their implications for a class of nonlocal operators, in particular for solutions to fractional
Schrödinger equations

(−∆)su+ qu = 0 in Ω ⊂ Rn, n ≥ 1, s ∈ (0, 1),
u = f in Ωe := Rn \ Ω,

(2.1)

where u ∈ Hs(Rn), f ∈ Hs(Rn \ Ω) and q : Ω→ R is in a suitable function space. We recall that
F((−∆)su)(ξ) := |ξ|2s F u(ξ), where F denotes the Fourier transform.

Before however turning to solutions of (2.1), we state a striking global (weak) unique continua-
tion result for arbitrary functions in Hs(Rn):

Theorem 2.1 ([23, Theorem 1.1]). Let s ∈ (0, 1) and let u ∈ Hs(Rn). Assume that for some open
set Ω ⊂ Rn it holds

u(x) = 0, (−∆)su(x) = 0 for almost every x ∈ Ω. (2.2)

Then, u ≡ 0 in Rn.

Let us comment on this:
Firstly, we note that this result is a very nonlocal property in that it clearly fails for the case

s = 1. For the case s ∈ (0, 1) it states that global information on u can be retrieved from local
information, provided the two pieces of information from (2.2) are given. Heuristically, this is
due to the nonlocality of the operator; however a word of caution is needed: Nonlocality is not
sufficient for such a result, there are many nonlocal operators which do not enjoy such a strong
uniqueness property. In this sense, the result can be read as a strong rigidity property of the
fractional Laplacian. This will play an important role in the analysis of the fractional Calderón
problem, an associated inverse problem.

Secondly, it is worth mentioning that this result (for a more restricted class of settings) had
already been observed by Riesz [37], but was recently rediscovered and extended in [23]. The
argument in [23] relies on Carleman estimates which had been derived in [38] in the analysis of
the (strong) unique continuation properties of solutions to (2.1), see also [19, 20, 22, 39, 45, 52]
for similar (weak and strong) unique continuation properties.

Thirdly, it is interesting to observe that the strong global rigidity properties of the fractional
Laplacian had already been well-known in the physics community under the name of the Reeh-
Schlieder theorem. We refer to [51] and the references therein for the physical significance of this
property.

Let us explain how the rigidity result of Theorem 2.1 can be obtained from a corresponding
(weak) unique continuation result.

Sketch of the proof of Theorem 2.1. We first recall that due to the seminal work of Caffarelli–
Silvestre [6], the fractional Laplacian can be written as a weighted Dirichlet-to-Neumann map of
a degenerate elliptic equation: Consider u ∈ Hs(Rn) and a solution

ũ ∈ H1(Rn+1
+ , x1−2s

n+1 ) :=
{
v : Rn+1

+ → R :
∫
Rn+1

+

x1−2s
n+1 |∇v|2dx <∞

}
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to the equation
∇ · x1−2s

n+1 ∇ũ = 0 in Rn+1
+ ,

ũ = u in Rn × {0},
(2.3)

where Rn+1
+ denotes the upper half-space. Then,

(−∆)su(x) = cn,s lim
xn+1→0

x1−2s
n+1 ∂n+1ũ(x, xn+1),

where this limit has to be understood in an H−s sense and where cn,s 6= 0 is an only dimension
and s dependent constant.

Now, with the Caffarelli–Silvestre extension at hand, the statement of Theorem 2.1 turns into
a boundary unique continuation property (in the spirit of [1]) for the Caffarelli–Silvestre extension,
i.e., it can be phrased as follows:

If u = 0 and limxn+1→0 x
1−2s
n+1 ∂n+1ũ = 0 on a (relatively) open set Ω ⊂ Rn × {0} =

∂Rn+1
+ , then u ≡ 0 in Rn+1

+ .

This however follows from the arguments which are used in the derivation of most of the known
unique continuation results for fractional Schrödinger equations (as in most of the articles dealing
with these nonlocal equations the authors approach the unique continuation property by means of
the Caffarelli–Silvestre extension). �

We remark that in the setting of Theorem 2.1, it is possible to deal with the situation of variable
coefficients, i.e. it is possible to replace (−∆)s by (−∇ · aij∇)s, where aij is a sufficiently regular,
uniformly elliptic metric. Similar results also hold in the context of the strong and the weak unique
continuation properties for fractional Schrödinger equations, see [38, Section 7] and [52]. In both
settings the Caffarelli–Silvestre extension [6] which allows to “localize” the problem plays a key
role.

Furthermore, the global weak unique continuation properties from Theorem 2.1 persist for a
larger class of nonlocal operators, see [14, 40]. Here a striking feature is that the elliptic/parabolic/
hyperbolic nature of the problem plays a much less prominent role than in the context of local
equations.

Moreover, the weak and strong unique continuation properties for the Caffarelli–Silvestre exten-
sion and thus for fractional Schrödinger equations can also be extended to the unique continuation
property from measurable sets in which one assumes that a solution to (2.1) vanishes on a set of
positive measure and seeks to deduce that this already implies the vanishing of u in Ω, see [19, 22].
Quantifications of these results are possible [40, 41, 42].

Let us now turn to solutions to the fractional Schrödinger equation (2.1). For the purpose
of these notes, let us always assume that zero is not a Dirichlet eigenvalue of the Schrödinger
operator (2.1). Using energy estimates and the Fredholm alternative this in particular implies that
the problem (2.1) is well-posed. It is thus possible to define the Poisson operator

Pq : Hs(W ) 7→ Hs(Rn), f 7→ u,

which maps a boundary datum f to the associated solution u to (2.1). For solutions to (2.1) the
rigidity properties of Theorem 2.1 have striking dual flexibility properties as a consequence.

Theorem 2.2 ([13] and [23, Theorem 1.2]). Let s ∈ (0, 1), let Ω ⊂ Rn be open and bounded and
let W ⊂ Rn \Ω be an open, non-empty set. Let q ∈ L∞(Ω) and let Pq denote the Poisson operator
associated with the fractional Schrödinger equation (2.1). Let v ∈ H̃s(Ω) be given. Then, for any
ε > 0, there exists f ∈ Hs(W ) such that

‖v − Pq(f)‖L2(Ω) ≤ ε.

We remark that this flexibility of nonlocal equations had first been observed in the work [13],
but had first been interpreted as a dual property to Theorem 2.1 in [23]. Viewing Theorems 2.1
and 2.2 as dual statements allows one to study very flexible (geometric) situations involving quite
rough domains and equations.

Again the property of Theorem 2.2 is a very nonlocal feature: For instance, in the local case
s = 1 in general maximum principles make such a result impossible. While the nonlocal equations of
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the form (2.1) under suitable conditions also enjoy maximum principles and Harnack inequalities,
these however only hold on global scales, locally solutions to the described nonlocal equations can
be much more flexible [26, 27].

Historically, results of the flavour of Theorem 2.2 had first been studied by Runge [44] in the
context of approximation results for analytic functions and are thus known as Runge approximation.
Later Runge type approximation results were studied by Lax [34], Malgrange [35] and Browder [4, 5]
in the context of much more general equations. These properties rely on a duality between unique
continuation and approximation. This duality is an important and frequently used tool in the
context of control theory problems [53], but has also been employed in the context of inverse
problems [2, 32] or the analysis of qualitative properties of PDE [17, 16, 18].

Just as in the case of the global unique continuation property it is possible to quantify the
approximation results from [41] and to study different operators [9, 10, 14]. This has been done
in [39, 40, 41, 42] for different equations and operators.

3. The fractional Calderón problem

As an application of the previous rigidity and flexibility properties of the fractional Laplacian
we discuss a nonlocal inverse problem, the fractional Calderón problem. The fractional Calderón
problem should be viewed as the nonlocal analogue of the Calderón problem, in which one seeks to
recover the conductivity of a material from boundary voltage and current measurements which are
encoded in the Dirichlet-to-Neumann map. In the case of an isotropic material, after a Liouville
transform this reduces to an inverse problem for a Schrödinger equation. Let us explain the set-up
for the inverse problem for the local Schrödinger equation in more detail: In the classical Calderón
problem for the Schrödinger equation, one considers the problem

(−∆)u+ qu = 0 in Ω,
u = f on ∂Ω. (3.1)

Here Ω ⊂ Rn is open, bounded Lipschitz, q : Ω → R is a potential in a suitable function space
and f : ∂Ω → R is sufficiently regular. Assuming that zero is not a Dirichlet eigenvalue of the
operator (3.1), it is possible to define the Dirichlet-to-Neumann map

Λq : H 1
2 (∂Ω)→ H−

1
2 (∂Ω), f 7→ ν · ∇u|∂Ω,

where ν denotes the outer unit normal field. The associated inverse problem deals with the question
of whether it is possible to recover information on q given the knowledge of the Dirichlet-to-
Neumann map Λq. This is an intensively studied problem, we refer to the survey [50] for references
on this.

In the fractional Calderón problem which had been introduced in [23] one studies a nonlocal
version of this inverse problem. Instead of investigating (3.1) one considers the equation (2.1).
Assuming that zero is not a Dirichlet eigenvalue of this problem, it is possible to define a “Dirichlet-
to-Neumann” (or rather Dirichlet-to-adjoint-Dirichlet) map. With slight abuse of notation, this can
formally be viewed as the mapping

Λq : Hs(Ωe) 3 f 7→ (−∆)su|Ωe ∈ H−s(Ωe). (3.2)
A rigorous definition requires an appropriate weak formulation of this. In the very recent work [12]
it was established that as in the classical Calderón problem also in the fractional Calderón problem
it is possible to relate a fractional conductivity equation by means of a Liouville transform to a
fractional Schrödinger equation.

In analogy to the classical Calderón problem for the Schrödinger equation, in the fractional
Calderón problem, one seeks to recover information on q from the knowledge of Λq. Since the
introduction of this problem in [23] there has been substantial progress in understanding its prop-
erties. In particular, the following issues have been addressed:

Uniqueness. This is the question whether
Λq1 = Λq2 ⇒ q1 = q2?

For the fractional Calderon problem, this was first addressed by [23] dealing with L∞ potentials
(see Theorem 3.1 below). This was extended to the class of scaling critical potentials in [40]. The
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article [21] dealt with the case of the variable coefficient fractional Laplacian. From dimensional
arguments one might hope that even a single measurement suffices to recover the potential. This
turns out to be correct [22] and will be discussed in Section 3.3 below.

Stability. Here one asks whether the following continuity type property holds
Λq1 ∼ Λq2 ⇒ q1 ∼ q2?

The closeness has to be phrased in suitable norms. Similarly as the classical Calderón problem,
also the fractional Calderón problem is notoriously ill-posed and only conditional stability can
be expected, i.e. stability can only be expected under suitable a priori conditions ensuring that
q is in some compact subset. In this context an important question deals with the impact of the
nonlocality of the fractional problem: Does it (as in some other nonlocal problems [25]) improve
the stability properties of the inverse problem compared to its local analogue? This question has
been studied in [40] and [41], where it was shown that as in the classical obstacle problem only a
logarithmic modulus of continuity holds and that this is indeed optimal, we refer to the discussion
below for the precise statement.

Recovery. In addition to the “abstract” uniqueness and stability properties, it is desirable to be able
to explicitly, algorithmically reconstruct the unknown potential. This has been addressed in [24]
for the infinite data problem by means of monotonicity methods and in [22] for the fractional
Calderón problem with a single measurement by exploiting the strong rigidity properties of the
fractional Laplacian (see Section 3.3 below).

The methods in the study of the fractional Calderón problem are rather robust. They for instance
also allow for the treatment of further important and interesting problems such as semilinear
problems of the fractional Laplacian [33], inclusion detection by means of single measurements [7]
or Helmholtz type inverse problems [8]. Also lower order perturbations (local and nonlocal) have
been considered in [3, 11].

In the sequel, we however focus on the three aspects introduced above for the model equa-
tion (2.1) and explain the main results and ideas in the treatment of the associated inverse problem.
Here we emphasize the connection to the rigidity and flexibility properties from Section 2.

3.1. Partial data uniqueness
We begin by discussing the uniqueness properties for the fractional Calderón problem. These were
first studied in [23], where the following result was proved:

Theorem 3.1 ([23]). Let s ∈ (0, 1), Ω ⊂ Rn be an open, bounded set. Let Wj ⊂ Rn \ Ω with
W j ∩ Ω = ∅ for j ∈ 1, 2 be open, non-empty sets. Suppose that q1, q2 ∈ L∞(Ω). Then, if for all
f1 ∈ H̃s(W1), f2 ∈ H̃s(W2) it holds

((Λq1 − Λq2)f1, f2)L2(Rn) = 0,
then q1 = q2 in Ω.

Here
H̃s(W1) := completion of C∞c (W1) in Hs(Rn),

where Hs(Rn) := {u : Rn → R : ‖(1 + |ξ|2) s
2 F u‖L2(Rn) < ∞} denotes the usual fractional

L2-based Sobolev space, see [15, 36].
Particularly important features of this result in which the nonlocality of the problem enters

are the fact that it is a partial data uniqueness problem. Instead of requiring the knowledge of
the full Dirichlet-to-Neumann map (3.2), it suffices to have information on potentially very small
subsets Wj ∈ Rn \ Ω in order to prove uniqueness. This also extends to the anisotropic problem
if one considers sufficiently regular (known) variable coefficients in the principal symbol [21]. This
is in strong contrast to the classical Calderón problem, where a result in such a generality is not
known [28, 29].

Further, different from the classical Calderón problem in which one can only hope to recover
the potential in dimensions larger or equal to two, the fractional Calderón problem is always
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overdetermined: Indeed, counting dimensions, one observes that the Dirichlet-to-Neumann map
for the fractional Calderón problem contains 2n degrees of determination (through the Schwartz
kernel of the Dirichlet-to-Neumann map) while one seeks to recover a function of n variables.

It is possible to generalize this result to rougher classes of potentials, see [40], where q is taken
in an almost sharp class of multipliers. In order to avoid technicalities, we do not discuss this in
the present review.

We outline the argument for Theorem 3.1:

Sketch of the proof of Theorem 3.1. The argument for Theorem relies on an integration by parts
identity (an “Alessandrini type identity”):

((Λq1 − Λq2)f1, f2)L2(Rn) = ((q1 − q2)u1, u2)L2(Ω), (3.3)
where u1, u2 are solutions to the fractional Schrödinger equations with data f1, f2 and potentials
q1, q2 respectively. Since by the assumption of the theorem,

((Λq1 − Λq2)f1, f2)L2(Rn) = 0,

by (3.3) it suffices to prove that the set of products of solutions u1u2 with data f1 ∈ H̃s(W1),
f2 ∈ H̃s(W2) forms a dense set in L1(Ω). In the classical Calderón problem this follows from the
construction of complex geometric optics solutions. Lacking these in the fractional setting, the key
idea of [23] was to use the strong approximation property from Theorem 2.2 to prove this density
result. �

3.2. Stability
An interesting question is concerned with the influence of the nonlocality of the operator on the
stability properties of the inverse problem at hand. Does nonlocality improve these properties?
In [40] it is shown that as in the classical Calderón problem also the fractional Calderón problem
enjoys logarithmic stability estimates.

Theorem 3.2 ([40]). Let s ∈ (0, 1), Ω ⊂ Rn be an open, smooth, bounded set. LetWj ⊂ Rn\Ω with
W j ∩ Ω = ∅ for j ∈ 1, 2 be open, non-empty sets. Suppose that q1, q2 ∈ L∞(Ω) with ‖qj‖L∞(Ω) ≤
M <∞ for j ∈ {1, 2}. Then, there exist constants C, µ > 0 depending on n, s,Ω,Wj ,M such that

‖q1 − q2‖H−s(Ω) ≤
C

log (‖Λq1 − Λq2‖∗)
µ ,

where
‖A‖∗ := sup

‖f1‖Hs(Rn)=‖f2‖Hs(Rn)=1
{(Af1, f2)L2(Rn) : f1 ∈ H̃s(W1), f2 ∈ H̃s(W2)}.

We emphasize that in analogy to the uniqueness result from the previous section, also the
stability estimate of Theorem 3.2 is a partial data result in the sense that ‖ · ‖∗ only takes partial
data into account.

One might wonder whether this result is optimal, or whether it is possible to improve on the
logarithmic modulus of continuity. In [42] it was proved that the logarithmic modulus is indeed
necessary.

Analogously to the classical case, if a priori information is available, e.g. if the potential is a
priori known to be in a suitably regular finite dimensional subspace, it is possible to improve on
this and prove Lipschitz estimates [43].

We give a very rough outline of the proof of Theorem 3.2.

Outline of the proof of Theorem 3.2. The proof starts with Alessandrini’s identity (3.3). Now how-
ever the left hand side no longer vanishes. In this situation a quantitative version of the Runge
approximation from Theorem 2.2 is used. Here the cost of approximating an arbitrary function
v by a solution u to (2.1) with a prescribed error threshold ε > 0 is measured by the size of
its boundary data f ∈ H̃s(W ) in terms of the admissible error ε > 0. This quantitative version
of Theorem 2.2 is obtained by reducing it to a quantitative unique continuation result which is
obtained by localizing the problem by means of the Caffarelli–Silvestre extension. �
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The argument provides an interesting connection between inverse problems and questions and
techniques from control theory.

3.3. Single measurement recovery
Last but not least we discuss the single measurement recovery and uniqueness result for the frac-
tional Calderón problem.

Theorem 3.3 ([22]). Let s ∈ (0, 1), Ω ⊂ Rn be an open, bounded set. Let W ⊂ Rn \ Ω with
W ∩Ω = ∅ be an open, non-empty set. Then q can be (algorithmically) reconstructed from a single
f ∈ Hs(W ) \ {0} and the measurement Λq(f).

An alternative recovery scheme (which however is slightly more restrictive in the class of admis-
sible potentials q and which is based on infinitely many measurements) is obtained by monotonicity
methods [24].

Let us emphasize that the reconstruction and uniqueness result in Theorem 3.3 is completely
algorithmic. As the previous two results, it is of very nonlocal flavour in the sense that it strongly
exploits the rigidity properties from Theorem 2.1. Also, it relies on the overdetermination of the
inverse problem. It is further possible to extend this result to potentials q ∈ L∞(Ω) if s ∈ [ 1

4 , 1).
We us outline the argument for Theorem 3.3.

Sketch of proof of Theorem 3.3. The proof relies on two main steps:

Step 1: Constructive recovery of u from (f,Λq(f)) for a single function f ∈ H̃s(W ) \ {0}. This
can for instance be achieved by a form of Tikhonov regularization. It essentially encodes that
a general function u ∈ Hs(Rn) is already determined by the two pieces of information given by
u|W and (−∆)su|W , where W is an open set. This hence essentially reduces to a rigidity estimate
of the type given in Theorem 2.1.

Step 2: Solving the equation for q and unique continuation. Once the function u is (construct-
ively) obtained on the whole of Rn, it is possible to solve the equation (2.1) for the potential:

q(x) = (−∆)su(x)
u(x) .

Using the unique continuation either from open sets (if q ∈ C0) or from measurable sets (if q is
less regular) we obtain that the quotient is well-defined on sufficiently many points x ∈ Ω, which
allows to reconstruct q(x) on these. �
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