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Journées Équations aux dérivées partielles
Roscoff, 30 mai–3 juin 2016
GDR 2434 (CNRS)

Asymptotic behaviour of the Landau equation
with Coulomb potential

Kleber Carrapatoso

Abstract

This is the written version of a talk given at the Journées Équations aux Dérivées Par-
tielles 2016 at Roscoff. We present in this note recent results on the asymptotic behaviour
of the Landau equation with Coulomb potential, in both spatially homogeneous and inho-
mogeneous cases. These results have been obtained in joint works with L. Desvillettes and
L. He in [6], and with S. Mischler in [7].

1. Introduction

The Landau equation is a fundamental model in kinetic theory that describes the evolution of a
plasma, taking into account collisions between the charged particles. The unknown is the distri-
bution F = F (t, x, v) ≥ 0 of particles that at time t ∈ R+ and position x ∈ T3 possess velocity
v ∈ R3. The Landau equation reads

∂tF + v · ∇xF = Q(F, F ), (1.1)
with initial condition F0 = F0(x, v) ≥ 0. When the initial condition only depends on the velocity
variable, that is F0 = F0(v), then the solution F = F (t, v) also depends only on v and verifies the
spatially homogeneous Landau equation

∂tF = Q(F, F ). (1.2)
Equation (1.1) is then referred to as the spatially inhomogeneous Landau equation.

The Landau collision operator Q acts only on the velocity variable v and is given by

Q(F,G)(v) = ∇ ·
∫

R3
a(v − v∗){F (v∗)∇G(v)−∇F (v∗)G(v)} dv∗, (1.3)

where a is a matrix-valued function that is symmetric, nonnegative and depends on the interaction
between particles. One usually assumes that particles interact by an inverse power law potential,
in which case a is given by (for i, j = 1, 2, 3)

aij(z) = |z|γ+2 Πij(z), Πij(z) = δij −
zizj
|z|2

, −3 ≤ γ ≤ 1. (1.4)

Observe that Π(z) := (Πij(z))i,j=1,2,3 is the orthogonal projection onto z⊥. One usually classifies
the different cases as follows

• 0 < γ ≤ 1: hard potentials;

• γ = 0: Maxwellian molecules;

• −2 ≤ γ < 0: moderately soft potentials;
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• −3 < γ < −2: very soft potentials;

• γ = −3: Coulomb potential.

It is worth mentioning that the Coulomb potential is the most physically interesting case, and
hereafter we will be mainly interested in this case (except in Section 1 where we present some
fundamental properties of the Landau equation valid to all cases −3 ≤ γ ≤ 1).

1.1. Fundamental properties
We introduce the following quantities

bi(z) = ∂jaij(z) = −2 zi |z|γ ,

and

c(z) = ∂ijaij(z) =
{
−2(γ + 3)|z|γ if − 3 < γ ≤ 1,
−8π δ0(z) if γ = −3,

where here and below we use the convention of implicit summation of repeated indices and the
usual shorthands ∂i = ∂vi , ∂ij = ∂vi,vj . In this way the Landau operator can be rewritten into two
other forms

Q(f, g) = ∂i{(aij ∗ f) ∂jg − (bi ∗ f) g} (1.5)
and

Q(f, g) = (aij ∗ f) ∂ijg − (c ∗ f) g. (1.6)

At the formal level, we can write a weak formulation of the Landau operator Q, thanks to (1.3),
in the following way: for any smooth test function ϕ = ϕ(v),∫

R3
Q(F, F )(v)ϕ(v) dv = −1

2

∫∫
R3×R3

aij(v − v∗)
{
∂iF

F
(v)− ∂iF

F
(v∗)

}
× {∂jϕ(v)− ∂jϕ(v∗)}F (v∗)F (v) dv∗ dv. (1.7)

Furthermore, based on the equations (1.5) or (1.6), another weak formulation also holds at the
formal level, namely∫

R3
Q(F, F )(v)ϕ(v) dv =

∫∫
R3×R3

Lϕ(v, v∗)F (v)F (v∗) dv∗ dv, (1.8)

with
Lϕ(v, v∗) = 1

2aij(v − v∗)
{
∂ijϕ(v) + ∂ijϕ(v∗)

}
+ bi(v − v∗)

{
∂iϕ(v)− ∂iϕ(v∗)

}
.

Coming back to the weak formulation (1.7), we are now able to deduce two fundamental prop-
erties of the Landau collision operator Q, which hold at least formally :

• the conservation of mass, momentum and energy;

• and the (Landau’s version of) Boltzmann’s H-Theorem;

which we present in details below.

1.1.1. Conservation laws

Taking ϕ = 1 or ϕ(v) = vα, for α ∈ {1, 2, 3}, we easily observe that ∂jϕ(v) − ∂jϕ(v∗) = 0
so that (1.7) vanishes. Moreover, for ϕ(v) = |v|2 we get ∂jϕ(v) − ∂jϕ(v∗) = 2(vj − v∗j) and
aij(v − v∗)(vj − v∗j) = 0 thanks to (1.4). We hence deduce that the operator conserves (at the
formal level) mass, momentum and energy, more precisely∫

R3
Q(F, F )(v)ϕ(v) dv = 0 for ϕ(v) = 1, vα, |v|2. (1.9)
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From this last estimate we obtain that the Landau equation (1.1) (or (1.2)) conserves the mass,
momentum and energy, that is, for ϕ(v) = 1, vα, |v|2 there hold

d

dt

∫
T3×R3

F (t, x, v)ϕ(v) dx dv

=
∫

T3×R3

{
Q
(
F (t, x, ·), F (t, x, ·)

)
(v)− v · ∇xF (t, x, v)

}
ϕ(v) dx dv = 0,

or, in the spatially homogeneous case (1.2),
d

dt

∫
R3
F (t, v)ϕ(v) dv =

∫
R3
Q
(
F (t, ·), F (t, ·)

)
(v)ϕ(v) dv = 0.

1.1.2. Boltzmann’s H-Theorem

Still from the weak formulation (1.7) (and at a formal level), choosing now the test function
ϕ(v) = logF (v) we deduce the Landau’s version of the celebrated Boltzmann’s H-Theorem:

• The entropy functional

H(F ) :=
∫

T3×R3
F (x, v) logF (x, v) dx dv (1.10)

is non-increasing along time, more precisely we obtain the following identity
d

dt
H(F ) = −

∫
D(F ) dx :=

∫
Q(F, F )(v) logF (v) dx dv

= −1
2

∫
aij(v − v∗)

{
∂iF

F
(v)− ∂iF

F
(v∗)

}{
∂jF

F
(v)− ∂jF

F
(v∗)

}
F (v)F (v∗) dx dv∗ dv

≤ 0,

(1.11)

since the matrix a is nonnegative, and where we drop the dependancy on t and x for simplicity.
The functional

D(F ) = −
∫
Q(F, F )(v) logF (v) dv (1.12)

is called the entropy dissipation.
• The global equilibria of (1.1) are global Maxwellian distributions in the velocity variable v

(i.e. Gaussian distributions) that are independent of time t and position x.

In the spatially homogeneous case (1.2), we also have the entropy inequality (1.11) (dropping
the integral in x), and the equilibria are Maxwellian distributions independent of time.

1.2. Trend to equilibrium
Let us normalise the initial data as (without loss of generality)∫

T3×R3
F0(x, v) dx dv = 1,∫

T3×R3
vF0(x, v) dx dv = 0,∫

T3×R3
|v|2F0(x, v) dx dv = 3,

(1.13)

and therefore we consider the associated global Maxwellian equilibrium (centred reduced Gaussian)

µ(v) = (2π)−3/2e−|v|
2/2, (1.14)

with same mass, momentum and energy of the initial data (normalising the volume of the torus to
|T3

x| = 1). In the spatially homogeneous case, the initial condition F0 = F0(v) satisfies the same
normalisation as in (2.3) (just dropping the integral in x).

From the H-Theorem presented above in Section 1.1.2, we then expect that solutions F (t)
to the Landau equation (in both spatially homogeneous (1.2) and spatially inhomogeneous (1.1)
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cases) converge to the associated Maxwellian equilibrium µ when time goes to infinity. We are then
interested in the following questions:

1. Does F (t)→ µ as t→∞? (in some sense to be precised)

2. If yes, at which rate?

Our aim in this note is to present two different results that prove this convergence and give
explicit estimates of the rate of convergence in the case of Coulomb potential γ = −3. For a brief
description of known results concerning well-posedness and asymptotic behaviour in the cases
−3 < γ ≤ 1 we refer to [6, 7] and the references therein.

In Section 2 we present the main result of [6] on the spatially homogeneous equation (1.2) with
Coulomb potential (γ = −3), in which we prove that any global weak solution converges to the
associated equilibrium with explicit rates.

In Section 3 we present the main result of [7], in which we study the spatially inhomogeneous
equation (1.1) with Coulomb potential (γ = −3) in a close-to-equilibrium framework (or pertur-
bative regime) and establish new well-posedness and quantitative trend to the equilibrium results.

2. The spatially homogeneous equation

We consider the spatially homogeneous Landau equation with Coulomb potential (γ = −3 in (1.4)){
∂tF = Q(F, F )
F|t=0 = F0.

(2.1)

We shall always suppose that the initial datum F0 satisfies the natural physical assumptions: F0
is nonnegative and has finite mass, energy and entropy, that is

F0 ≥ 0,
∫

R3
(1 + |v|2 + logF0(v))F0(v) dv < +∞.

From this last bound it is standard to obtain that F0 ∈ L1(〈v〉2) ∩ L logL, 〈v〉 := (1 + |v|2)1/2,
more precisely that ∫

R3

(
1 + |v|2 + | log(F0(v))|

)
F0(v) dv < +∞, (2.2)

which we assume hereafter. We also suppose, without loss of generality, that F0 satisfies the
normalisation ∫

R3
F0(v) dv = 1,

∫
R3
vF0(v) dv = 0,

∫
R3
|v|2F (v) dv = 3, (2.3)

and denote by µ(v) = (2π)−3/2e−|v|
2/2 the Maxwellian equilibrium with same mass, momentum

and energy than F0.

Existence and uniqueness. In the case of Coulomb potential, the existence of global weak
solutions has been established by Arsenev-Penskov [2], Villani [29] and Desvillettes [12] for any
initial condition with finite mass, energy an entropy; and Fournier [17] obtained local uniqueness
of strong solutions.

Convergence to equilibrium. Let us briefly mention some results concerning quantitative
convergence to equilibrium of the Landau equation in the spatially homogeneous case. The case of
hard potentials 0 ≤ γ ≤ 1 has been addressed in [14, 4], soft potentials −3 < γ < 0 with bounded
kernel (i.e. truncating the singularity of (1.4) at the origin) in [27], and moderately soft potentials
−2 < γ < 0 in [5].

We now describe the main result of [6]. Consider weight functions ω = ω(v) : R3 → R+ of the
form {

ω = 〈v〉`, with ` > 19/2;
ω = exp(α〈v〉σ), with 0 < σ < 1/2 and α > 0, or σ = 1/2 and 0 < α < 2/e.

(2.4)
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We denote the weighted Lebesgue space Lp(ω), with 1 ≤ p ≤ ∞, as the space associated to the
norm

‖f‖Lp(ω) := ‖ωf‖Lp .
We define the relative entropy of F ∈ L1 with respect to µ by

H(F |µ) :=
∫

R3
F (v) log

(
F (v)
µ(v)

)
dv (2.5)

and observe that, thanks to the conservation laws and the identity (1.11), we get the following
entropy-entropy dissipation identity

d

dt
H(F (t)|µ) = −D(F (t)). (2.6)

It is also worth mentioning that the relative entropyH(F |µ) is a strong way to measure the distance
between F and µ, more precisely there holds, thanks to the Cziszar-Kullback-Pinsker inequality
([10, 20]),

‖F − µ‖2L1 ≤ 2H(F |µ).

We obtain the following result on the convergence to equilibrium.

Theorem 2.1 ([6, Theorem 2]). Let F0 ∈ L1(〈v〉2) ∩ L logL satisfy the normalisation (2.3),
and consider any global weak solution F to the spatially homogeneous Landau equation (2.1) with
Coulomb potential (γ = −3) and with initial data F0. Let ω satisfy (2.4) and assume moreover
that F0 ∈ L1(ω). Then there holds

H(F (t)|µ) . Γω(t), ∀ t ≥ 0, (2.7)
where

Γω(t) = 〈t〉−β , if ω = 〈v〉` (2.8)
for any β ∈ (0, β`) with β` := (2`2 − 25`+ 57)/(9(`− 2)), or

Γω(t) = exp
(
−λ 〈t〉

σ
3+σ

(log〈t〉)
3

3+σ

)
, if ω = eα〈v〉

σ

, (2.9)

for some constant λ > 0.

2.1. Overview of the proof of Theorem 2.1
The proof of Theorem 2.1 is based on a variant of the entropy-entropy dissipation method.

We shall briefly present below the entropy-entropy dissipation method, which has been widely
used to investigate the large time behaviour of several models in kinetic theory and also other
evolution PDEs.

Consider an abstract evolution equation given by
∂tf = Q(f), f|t=0 = f0,

and suppose that this equation possesses a Lyapunov functional H, usually called entropy, that is
the functional H satisfies

d

dt
H(f) ≤ 0.

We then define the associated dissipation functional, usually called entropy dissipation, by

D(f) := − d

dt
H(f).

Furthermore, we suppose that there exists an unique equilibrium f∞ in the sense that
Q(f) = 0 ⇔ D(f) = 0 ⇔ H(f) = H(f∞) ⇔ f = f∞.

We then investigated the existence of functional inequalities relating the entropy dissipation D(f)
to the entropy H(f) itself. If the method is successful, these inequalities enable us to close a
differential inequality for the entropy and hence imply the large time behaviour of the solutions f .

For example, if we are able to obtain an inequality of the form
D(u) ≥ λ(H(u)−H(u∞)), λ > 0,
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we hence deduce that solutions f = (ft)t≥0 satisfy
d

dt
(H(ft)−H(f∞)) ≤ −λ(H(ft)−H(f∞)),

which, by Gronwall’s lemma, yields an exponential rate of convergence

0 ≤ (H(ft)−H(f∞)) ≤ e−λt (H(u0)−H(u∞)).

In the particular case of Boltzmann and Landau equations of kinetic theory, Cercignani [9]
suggested the functional inequality that hopefully links the entropy dissipation and the entropy,
and this is known since then as Cercignani’s conjecture (see [13] for a detailed description and a
review on results).

Let us now describe the main ideas of the proof of Theorem 2.1.

2.1.1. Entropy dissipation estimate and convergence to equilibrium

Consider a solution F to (2.1). We recall that the relative entropy H(F |µ) was defined in (2.5), the
entropy dissipation D(F ) in (1.12) and that they satisfy the entropy-entropy dissipation identity
(2.6).

Our first step is then to look for inequalities relating H(F |µ) and D(F ). Inspired by some
arguments developed by Desvillettes in [12], we obtain a new estimate that bounds from below
the entropy dissipation D(F ) by a weighted relative Fisher information of F with respect to the
associated Maxwellian distribution µ in the following way:

Theorem 2.2. Let F ∈ L1(〈v〉2) ∩ L logL satisfy the normalisation (2.3). Then there exists a
constant C > 0 such that

D(F ) ≥ C (M5(F ))−1
∫

R3
F (v)

∣∣∣∣∇F (v)
F (v) + v

∣∣∣∣2 〈v〉−3 dv,

where, for any k ≥ 0, Mk(F ) :=
∫

R3(1 + |v|2)k/2F (v) dv, denotes the moment of order k of F .

As a consequence of this last estimate, using the logarithmic Sobolev inequality, we shall prove
a variant of the so-called weak Cercignani’s conjecture for the Landau equation with Coulomb
potential:

Corollary 2.3. Under the same conditions of Theorem 2.2, there exists C > 0 such that

D(F ) ≥ C (M5(F ))−1
∫

R3

{
F log

(
Z1

Z2

F

µ

)
+ Z2

Z1
µ− F

}
〈v〉−3 dv,

with Z1 =
∫
〈v〉−3µ and Z2 =

∫
〈v〉−3F .

We finally obtain that, for any R > 0, there holds

D(F ) ≥ C (M5(F ))−1R−3

(
H(F |µ)−

∫
〈v〉≥R

F logF dv

− C
∫
〈v〉≥R

〈v〉2 F dv − C
∫
〈v〉≥R

µdv

)
.

(2.10)

We then write equation (2.6) and use (2.10) with some R = R(t) (to be chosen later) depending
on time. We use the propagation of moments of the solution F (established in [6, Lemma 8 and
Corollary 8.1]), that is a control in time of quantities of the form ‖ωF (t)‖L1 for weight functions
satisfying (2.4).

Gathering all these estimates together with the following “regularity” type estimate established
in [12]:

‖〈v〉−3F (t)‖L3 ≤ D(F (t)) + C,

for some constant C > 0 independent of time, we are then able to complete the proof of Theorem 2.1
with some interpolation inequalities and choosing the function R = R(t) in a specific way.

IV–6



3. The spatially inhomogeneous equation

We consider now the spatially inhomogeneous Landau equation (1.1) with Coulomb potential
(γ = −3 in (1.4)), in a perturbative framework, that is, in a close-to-equilibrium setting.

Consider initial condition F0 satisfying the normalisation∫
F0(x, v) dx dv = 1,

∫
vF0(x, v) dx dv = 0,

∫
|v|2F0(x, v) dx dv = 3,

and denote µ = (2π)−3/2e−|v|
2/2 the global Maxwellian equilibrium with same mass, momentum

and energy than F0 (considering the normalisation |T3
x| = 1).

We then define the perturbation
f := F − µ

that satisfies {
∂tf = Λf +Q(f, f),
f0 = F0 − µ,

(3.1)

where
Λf := Lf − v · ∇x (3.2)

is the inhomogeneous linearised operator, and

Lf := Q(µ, f) +Q(f, µ) (3.3)

is the (homogeneous) linearised collision operator.

We consider weight functions m = m(v) : R3 → R+ satisfying{
m = 〈v〉k, with k > 2 + 3/2;
m = exp(κ〈v〉s), with 0 < s < 2 and κ > 0, or s = 2 and 0 < κ < 1/2;

(3.4)

and we denote σ = 0 when m = 〈v〉k and σ = s when m = eκ〈v〉
s . We denote by H2

xL
2
v the Sobolev

space associated to the norm

‖f‖2H2
xL

2
v

:= ‖f‖2L2
x,v

+ ‖∇xf‖2L2
x,v

+ ‖∇2
xf‖2L2

x,v

where L2
x,v = L2(T3

x ×R3
v) is the usual Lebesgue space in T3

x ×R3
v.

The main result of [7] is the following result on the existence, uniqueness and convergence to
equilibrium in a close-to-equilibrium framework.

Theorem 3.1 ([7, Theorem 1.1]). Let m be a weight function satisfying (3.4). There exists ε0 > 0
small enough so that, if ‖mf0‖H2

xL
2
v
≤ ε0, there exists a unique global weak solution f to (3.1) such

that
sup
t≥0
‖mf(t)‖2H2

xL
2
v

+
∫ ∞

0
‖〈v〉

σ−3
2 mf(t)‖2H2

xL
2
v
dt

+
∫ ∞

0
‖〈v〉− 3

2 ∇̃v{mf(t)}‖2H2
xL

2
v
dt . ε20,

(3.5)

where ∇̃v is the anisotropic gradient

∇̃vf = Pv∇vf + 〈v〉(I − Pv)∇vf, Pv∇vf =
(
v

|v|
· ∇vf

)
v

|v|
.

This solution verifies the decay estimate

‖f(t)‖H2
xL

2
v
. Θm(t) ‖mf0‖H2

xL
2
v
, ∀ t ≥ 0, (3.6)

where
Θm(t) = 〈t〉−

(k−k∗)
3 , ∀ k∗ ∈ (2 + 3/2, k), if m = 〈v〉k,

or
Θm(t) = exp

(
−λ 〈t〉s/3

)
, if m = eκ〈v〉

s

,

for some constant λ > 0.
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Let us mention some known results for the Landau equation with Coulomb potential in the
spatially inhomogeneous case. For large data, that is, in a non perturbative setting, based on
the theory of renormalised solutions developed by DiPerna-Lions [16], the existence of global
renormalised solutions with a defect measure was established by Villani [28] and Alexandre-Villani
[1], for any initial datum with finite mass, energy and entropy. Desvillettes and Villani [15] proved
algebraic convergence to the equilibrium for a priori smooth solutions with uniform-in-time bounds.

On the other hand, in a perturbative regime, Guo [19] proved well-posedness in the high-order
Sobolev space with fast decay in velocity H8

x,v(µ−1/2) := {f | µ−1/2f ∈ H8
x,v}, and Guo and

Strain [25, 26] proved sub-exponential convergence to equilibrium also in the same type of space
H8
x,v(µ−θ), θ ∈ (1/2, 1).
Our result thus improves the well-posedness theory of Guo [19] to larger spaces H2

xL
2
v(m)

:= {f | mf ∈ H2
xL

2
v} as well as the convergence to equilibrium of Guo and Strain [25, 26] to larger

spaces and with more accurate rate.

As a corollary of Theorem 3.1, we are able to improve the rate of convergence to equilibrium
established in [15] in a non perturbative setting assuming a priori bounds on the solution, in the
following way:

Corollary 3.2 ([7, Corollary 1.4]). Consider a global strong solution F to the spatially inhomo-
geneous Landau equation (1.1) such that

sup
t≥0

(
‖F (t)‖H`x,v + ‖mF (t)‖L1

x,v

)
< +∞,

for some explicit ` ≥ 3 large enough and some exponential weight function m satisfying (3.4).
Assume further that the spatial density is uniformly positive on the torus, that is

∀ t ≥ 0, x ∈ T3,

∫
R3
f(t, x, v) dv > 0.

Then this solution satisfies

‖F (t)− µ‖H2
xL

2
v
. Θm(t), ∀ t ≥ 0, (3.7)

where Θm is defined in Theorem 3.1.

3.1. Outline of the proof of Theorem 3.1

The proof of Theorem 3.1 involves two different parts: (1) simple nonlinear estimates for the
Landau collision operator Q and a trapping argument; and (2) stability estimates for the semigroup
associated to the linearised operator Λ in the corresponding spaces.

It is worth mentioning that our method is mostly based on these semigroup stability estimates.
Furthermore, in order to do that, we develop a method to prove non-uniform (non-exponential)
stability estimates of semigroups in large functional spaces, by taking advantage of a weak coer-
civity estimate in one small space and using an enlargement trick for weakly dissipative operators
that we develop in [7].

This enlargement trick we develop in [7] is inspired on the extension theory of [18] (introduced
in [22]) and it generalises the theory of [18] to the case in which the operator does not possesses a
spectral gap (hence its associated semigroup is not exponentially stable).

Let us now describe our method in more details.

3.1.1. Linear stability

We first investigate the linearised (inhomogeneous) operator Λ defined in (3.2) and prove strong
(non uniformly exponential) stability estimates for the associated semigroup SΛ(t) in several large
Hilbert spaces. These stability estimates are the crucial part of our method and are obtained in
several steps.

Step 1. The linearised version of the H-Theorem implies that the homogeneous linearised collision
operator L (defined in (3.3)) satisfies the following weak coercivity inequality in some “small”
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Hilbert space E0:
∀ f ∈ Dom(L|E0), 〈Lf, f〉E0 . −‖ΠLf‖2E0,∗

, E0,∗ 6⊂ E0.

where Dom(L|E0) stands for the domain of L when acting on the space E0, ΠL denotes the
projection onto the orthogonal of ker(L), and E0,∗ is another Hilbert space.

Using a hypocoercivity trick, we then obtain an analogous weak coercivity estimate for the
inhomogeneous linearised operator Λ = L− v · ∇x (defined in (3.2)), still in some “small” Hilbert
space E,

∀ f ∈ Dom(Λ|E), 〈Λf, f〉E . −‖Πf‖2E∗ , E∗ 6⊂ E, (3.8)
where here Dom(Λ|E) stands for the domain of Λ when acting on the space E, Π denotes the
projection onto the orthogonal of ker(Λ), and E∗ is a second Hilbert space (in the norm of which
we express the weak dissipativity property of Λ in E).
Step 2. In several (large) Hilbert spaces X, the operator Λ factorises as Λ = A+B satisfying the
following properties : the operator A : X → X is bounded; B is weakly dissipative in the sense

∀ f ∈ Dom(Λ|X), 〈Bf, f〉X . −‖f‖2X∗ , X∗ 6⊂ X, (3.9)
where again Dom(Λ|X) stands for the domain of Λ when acting on the space X and X∗ is a second
Hilbert space; and some convolution power of the operators ASB and SBA enjoy suitable regularity
properties.

We observe here that one cannot deduce any decay estimate on the associated semigroups
ΠSΛ (resp. SB) directly from inequality (3.8) (resp. inequality (3.9)). This framework of weakly
dissipative operators is hence more tricky than the classical dissipative case, in which an analogous
estimate is obtained with X∗ = X and that already implies an exponential decay estimate for the
associated semigroup.
Step 3. Using (3.9) with several choices of spaces X and using an interpolation argument, we first
obtain that SB is strongly (non-uniformly exponentially) stable. More precisely, for several choices
of Hilbert spaces X ( X0, we have first

‖SB(t)‖X→X0 ≤ Θ(t)→ 0, as t→∞, (3.10)
for some polynomial or sub-exponential decay function Θ = ΘX,X0 , as well as the regularisation
estimate

‖SB(t)‖X′∗→X0 ≤ (t ∧ 1)−1/2 Θ∗(t), (3.11)
for some polynomial decay function Θ∗ = ΘX′∗,X0 and where X ′∗ is the dual of X∗ for some suitable
duality product.
Step 4. Next, by using an extension trick, we deduce that ΠSΛ also enjoys the decay and regu-
larisation estimates of SB presented above. More precisely, recalling the factorisation Λ = A + B
and writing iterated Duhamel formulas with this splitting, we deduce that, for any `, n ∈ N, there
holds

SΛΠ =
∑

0≤j≤`−1
ΠSB ∗ (ASB)(∗j) +

∑
0≤i≤n−1

(SBA)(∗i) ∗ SBΠ ∗ (ASB)(∗`)

+ (SBA)(∗n) ∗ SΛΠ ∗ (ASB)(∗`).

We then use factorisation together with the properties of the operators A and B presented above,
and the decay of SΛΠ in some small space (associated to the weak dissipativity (3.8)), which yields
that ΠSΛ enjoys the same estimates of SB, that is

ΠSΛ satisfies the decay estimate (3.10),
as well as

ΠSΛ satisfies the regularisation estimate (3.11).

Step 5. We then define a new norm, for some convenient choice of η,K > 0,

∀ f ∈ ΠX, |||f |||2X := η‖f‖2X +
∫ ∞

0
‖SΛ(τ)f‖2X0

dτ, (3.12)

which is an equivalent norm in ΠX, and for which Λ satisfies the weak dissipativity estimate
∀ f ∈ Dom(Λ|X), 〈〈Λf, f〉〉X ≤ −K‖Πf‖2X∗ , (3.13)
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where 〈〈·, ·〉〉X stands for the duality bracket associated to the ||| · |||X norm.

3.1.2. Nonlinear estimates

We first prove nonlinear estimates for the quadratic operator in the spaces X,X∗ of the form

〈Q(f, f), f〉X ≤ C‖f‖X ‖f‖2X∗ .

Together with the estimates of Λ and ΠSΛ presented above, we are then able to deduce a similar
nonlinear estimate of Q for the new norm ||| · |||X and duality bracket 〈〈·, ·〉〉X :

〈〈Q(f, f), f〉〉X ≤ C|||f |||X ‖f‖2X∗ . (3.14)

3.1.3. Nonlinear stability

Combining the weak dissipativity estimate (3.13) with the nonlinear estimate (3.14), we finally
establish that for any solution f = F − µ to the Landau equation (3.1), the following a priori
estimate holds

d

dt
‖Πf‖2X ≤ ‖Πf‖2X∗(−K + C‖Πf‖X).

Our existence, uniqueness and asymptotic stability results are then immediate consequences of
that last differential inequality and of the estimates it provides.

3.2. Functional spaces and main estimates

We now present the functional setting we work on and the main weakly dissipative estimates
corresponding to (3.9) in the method presented above in Sections 3.1.1, 3.1.2 and 3.1.3.

We denote by L2
x,v = L2

x,v(T3
x ×R3

v) the standard Lebesgue space on T3
x ×R3

v. For a velocity
weight function m = m(v) : R3

v → R+, we then define the weighted Lebesgue L2
xL

2
v(m) and

Sobolev spaces Hn
xL

2
v(m), associated to the norms

‖f‖2L2
xL

2
v(m) := ‖mf‖2L2

x,v

and
‖f‖2H2

xL
2
v(m) := ‖mf‖2L2

x,v
+ ‖∇x(mf)‖2L2

x,v
+ ‖∇2

x(mf)‖2L2
x,v
.

We also define the space H1
x,v(m), for a weight function m satisfying (3.4), as the space associated

to the norm defined by

‖f‖2H1
x,v(m) := ‖mf‖2L2

x,v
+ ‖∇x(mf)‖2L2

x,v
+ ‖〈v〉σ4− 3

2 ∇v(mf)‖2L2
x,v
, (3.15)

where we recall that σ is defined in (3.4). Consider the space H1
v,∗(m) associated to the norm

‖f‖2H1
v,∗(m) := ‖m〈v〉(σ−3)/2f‖2L2

v
+ ‖〈v〉−3/2∇̃v(mf)‖2L2

v
, (3.16)

where ∇̃v is the anisotropic gradient

∇̃vf = Pv∇vf + 〈v〉(I − Pv)∇vf, Pv∇vf =
(
v

|v|
· ∇vf

)
v

|v|
.

When furthermorem is a polynomial weight function, we define the negative Sobolev spaceH−1
∗ (m)

in duality with H1
∗ (m) with respect to the duality product on L2(m), more precisely

‖f‖H−1
v,∗(m) = sup

‖φ‖H1
v,∗(m)≤1

〈mf,mφ〉L2
v
. (3.17)

The space H2
x(H1

v,∗(m)) is associated to the norm

‖f‖2H2
x(H1

v,∗(m)) :=
2∑
j=0
‖ ‖∇jxf‖H1

v,∗(m) ‖2L2
x
. (3.18)
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When furthermorem is a polynomial weight function, we also define the negative weighted Sobolev
space H2

x(H−1
v,∗(m)) in duality with H2

x(H1
v,∗(m)) with respect to the H2

xL
2
v(m) duality product,

more precisely
‖f‖H2

x(H−1
v,∗(m)) := sup

‖φ‖H2
x(H1

v,∗(m))≤1
〈mf,mφ〉H2

xL
2
v
.

For a weight function m satisfying (3.4), the spaces corresponding to the method presented in
Section 3.1 are then

X = H2
xL

2
v(m), X0 = H2

xL
2
v,

X∗ = H2
x(H1

v,∗(m)), X ′∗ = H2
x(H−1

v,∗(m)).

Let us now present some of the key estimates. First of all, on the space L2
v(µ−1/2), we classically

observe that the homogeneous linearised operator L is self-adjoint and verifies 〈Lf, f〉L2
v(µ−1/2) ≤ 0,

so that its spectrum satisfies Σ(L) ⊂ R−. We also have the following weak coercivity inequality
from [11, 3, 19, 21, 24]

〈Lf, f〉L2
v(µ−1/2) . −‖ΠLf‖2H1

v,∗(µ−1/2), ∀ f ∈ L2
v(µ−1/2),

where ΠL is the projection onto the orthogonal of kerL. From this estimate and a hypocoercivity
argument developed in [23], we get an analogous estimate for the inhomogeneous linearised operator
Λ in the space H1

x,v(µ−1/2) associated to an equivalent norm. This gives us the first step presented
in Section 3.1.1.

We introduce the factorisation Λ = A+ B with
Af = Q(f, µ) +MχRf, Bf = Q(µ, f)−MχRf − v · ∇xf,

for constants M,R > 0 to be chosen large enough and where χR is a smooth cutoff function, that
is, χR(·) = χ(·/R), 0 ≤ χ ∈ C∞c (R3), χ(x) = 1 if |x| ≤ 1 and χ(x) = 0 if |x| > 2.

The main estimates and properties presented in steps 2 to 5 of Section 3.1.1 are variants and
consequences of the following weak dissipativity estimates of B: there exist M,R > 0 large enough
such that

• B is weakly dissipative in H2
xL

2
v(m), in the sense

〈Bf, f〉H2
xL

2
v(m) . −‖f‖2H2

x(H1
v,∗(m)).

• B is weakly dissipative in H1
x,v(m), in the sense

〈Bf, f〉H̃1
x,v(m) . −‖f‖

2
H̃1
x,v(m〈v〉(σ−3)/2)

where ‖ · ‖H̃1
x,v(m) is a equivalent norm on H1

x,v(m) and 〈·, ·〉H̃1
x,v(m) is its associated scalar

product.

From all the estimates obtained in Section 3.1.1, following [19, 8] we can then obtain the corre-
sponding nonlinear estimates (that is, in the same spaces) of Section 3.1.2 and 3.1.3.
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