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1 Introduction. Let n be a nonnegative sufficiently smooth function of two real variables

z and y, and let complez-valued solutions w to the following first-order partial

differential equation
w%-’rwg—}-nQ(a:,y):O (L.1)
be in demand. Equation (1.1) arises, e.g., in questions about characteristic surfaces of
Laplace’s equation, and in the theory of diffraction by J.Keller and D.Ludwig. In the
present paper we outline forthcoming results by R.Magnanini and the author, which
include an existence theorem and a theorem about critical points.
The present section is devoted to formal remarks. Suppose
w=u+w; (1.2a)
l.e., suppose
u=R(w) and v = J(w), (1.2b)
the real and imaginary parts of w. Equation (1.1) is equivalent to the following first-

order system of partial differential equations
u3+u§+n2=v%+v§, (1.3a)
UgVg + Uyvy =0 (1.3b)
— in alternative notations,
|Vu|2+n2=|Vv|?,
Vu-Vo=0.
Equation (1.3a) implies that the length of the gradient of v exceeds n, and equals n
exactly at the critical points of u. Equation (1.3b) tells us that the gradients of v and v

are orthogonal — thus the level lines of u are lines of steepest descent of v and the lines

of steepest descent of u are level lines of v.

XIII.1



System (1.3) can be easily decoupled. In fact, algebraic manipulations show that

(1.3) can be recast either in the following form

n2 —
[v} + |1+ —~ ! "”], (1.4a)
Uy uz +uy | Ug

or in the form of the following pair

2
YTl 41— 2n 5 ‘v , v%+v§2n2. (1.4Db)
Uy vzt vy [ Vg

Loosely speaking, equations (1.4a) make the gradient of v available if and only if u

obeys the following partial differential equation

2 2
d n a
eI N D 1 —0; 1.5
69:{ +u%+uy } By{ +u2.+u2 uy} (1.5a)

the equations appearing in (1.4b) make the gradient of u available if and only if v

obeys the constraint involved and the following partial differential equation

D) D)
) n 9 n
—~ l————=v,++ l——b——=vuv,=0. 1.6
0:::{ v%+v§, x} ay{ v%-l-vg, y} (1.6a)

Thus, system (1.3) is satisfied if and only if either u satisfies equation (1.5a) and v is
given by (1.4a), or v satisfies v2 + v% > n? and equation (1.6a) and u is given by (1.4b).

Equations (1.5a) and (1.6a) can be recast in the following form
{ | Vu |4+ n? u% }um - 2n2uzuyuxy -I-{ | Vu |4+ n2u2 }uyy (1.5b)
+n|Vu|2Vn -Vu=0,
and
{|Vv|4 n? vy Vgr +2n vxvyvzy+{|Vv|4——n v%} Vyy
—n|Vv|2Vn.-Vv=0, (1.6b)

respectively — i.e., in the form of semilinear second-order partial differential equations
with polynomial nonlinearities. If the coefficients of uz, ,uzy ,uy, appearing on the left-
hand side of (1.5b) are denoted by a,2b,¢, then

= | Vul8(|Vu|2+n2)>0.

bc
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Hence equation (1.5b) should be qualified elliptic or elliptic-parabolic — notice that
degeneracies occur at the critical points of solutions. If a,2b,c denote the coefficients of

VUgz s Vgy »Vyy appearing on the left-hand side of (1.6b), then

Zlc) = |Vv|6(|Vv|2—n2).

Hence solutions v to (1.6b), such that | Vv | zs n2, are elliptic; any real-valued solution

v to the equation
| Vv |2 =n?
— the standard equation of geometrical optics, which implies equation (1.6¢c) indeed —
is a parabolic solution to (1.6¢).
Observe that a set of terms, appearing on the left-hand side of equations (1.5b) and
(1.6b), has a special geometric meaning. In fact, equations (1.5b) and (1.6b) read

|Vu|Au+n2h+nVn-|gz|=0, (1.5¢)
and
|Vv|Av—n2k—nVn~ng|=0, (1.6¢)
respectively. Here
h = dw | gz | = (u% + u%)—3/2 (ug Ugg — 2UylUg Ugy + uZ uyy) , (1.7a)
— 1. VU
k = div Vol (1.8a)

Recall from differential geometry that the absolute value of h at a point (z,y), where
the gradient of u does not vanish, is the curvature at (z,y) of the level line of u crossing
(z,y); the absolute value of k at a point (z,y) is the curvature at (z,y) of the level line
of v crossing (z,y). Equations (1.4) yield

o

. v —
£h=div { L f|s|= (02 + 02 )30 {—vxvy(vm — vy )+ (v - vg)vxy} , (1.7b)
—Yr
— din L | %],
+k=dw VT |, | (1.8Db)

hence the absolute value of h at a point (z,y) is also the curvature at (z,y) of the line of
steepest descent of v crossing (z,y), and the absolute value of k at a point (z,y) is also

the curvature at (z,y) of the line of steepest descent of u crossing (z,y).
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2 An existence theorem. The existence of solutions to equation (1.5b), that take
prescribed boundary values, can be settled in the following way.

Theorem 1. Let G be an open subset of the euclidean plane, having finite area — the
ground domain; let g be a real-valued function from Sobolev space W1’2(G) — the
boundary datum. Suppose n is bounded and belongs to Wl’Q(G). Then a real-valued
function u exists such that: (i) u is in Wl’Q(G), u has second-order generalized

derivatives and satisfies

| Vul® 2 . .9
clomt Vel (22 +2uzy + 1y ) dedy < (2.1)
6"21 (n2+ |Vul2)d:cdy-|— I | Vn |2 dady
G G
for every positive § — here G(6) = {(z,y) € G: dist((z,y),0G)> }; (ii) u satisfies
equation (1.5b) almost everywhere in G, u is a viscosity solution to (1.5b); (iii) u fits g
on 0G, ie.,u—g€ W(1)’2(G).
Proof, outlined. Let

p
i(z,y;p) = an(x, y)+t2dt, (2.2a)
0

and let a functional J, be defined by

Je(u) = I j(:r,y;\|52+ IVulz)dxdy (2.2b)
G
for every nonnegative e. Formulas (2.2) guarantee that J, is strictly conver and

coercive, i.e., satisfies

Je(u) 2

3| 1Vu|? dady

G
for every u from Wl’Q(G). Consequently, the following variational problem
J¢(u) = minimum (2.3)
under the condition: u — g € W(1)’2(G)

has a unique solution — call it u,.
Observe that equation (1.5a) is exactly the Euler equation of functional J.

However, u need not satisfy such an equation. In fact, the following expansion
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i(z,y,p) = n(z, y)p{l +n7X(z,y) % 4},
which holds for sufficiently small p, shows that J;, is not differentiable at any function
having critical points.
The main ingredient of the proof are statements (i)-(iii) below.

(1) If >0, J,. is smoothly differentiable; moreover, u, satisfy the relevant Euler

equation both in the following weak form

2 2
9 n Ous| 9 n Ou,
=141 -1 =0 2.4

and in the following stronger form

52(n2+2|Vu|2+62)Au+ (2.4b)

Ou,. \2 0%u Ou, Ou,. 0*u { (6u ) }6 u
v 4 | 2 € € 2 VU OUg € \V/ 4 £ €
{' ue|"+n (ay) } 02? 2n 0y Oz 0z 0y | Ve |"+n 0 Oy?

n(|Vu|2+52)Vn-Vu:0

— in particular, u, has locally square-integrable second-order partial derivatives.

(i1) If € > 0, u, satisfies the following inequality

2 2 2 2, \2
| Vug | 2 (32%) (a us) (a ue)
+2| 5= | +| 5= ¢drdy < 2.5
GL)”2+ | Vue | # |\ 02° 0z0y) "\ 0y’ Y 239)
6—2J(n2+ |Vu€|2)dzdy+ J | Vn |2 dzdy
G G
for every positive § — observe that the constants involved in inequality (2.5) are

independent of €.

ii1) J, converges uniformly to J, as €|0 , more precisely
€ g 0

0<Je ()~ o) < [ie,v;¢)dady (26)
G
for every u in wh2(@).
Statements (i)-(iii) allows one to infer that u, converge to u — in a topology

stronger than the topology of WI’Q(G) and the topology of any Wloc (G) — as € goes to

zero, and that u is the sought solution u. [
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3 Critical points. As a rule, the critical points of solutions to second-order 2D partial
differential equations are isolated. The following theorem shows that equation (1.5b) has
the opposite property.

Theorem 2. Suppose

n(z,y) > Constant > 0. (3.1)

Let w be a smooth solution to equation (1.1), and let u be the real part of w. Then u
cannot have isolated critical points.

Proof. Let

= 1 Uy
]Vu| Uy ’

(3.2a)

a unit vector field whose trajectories are the level lines of v and whose divergence is —
in absolute value — the curvature of the lines of steepest descent of u. Equation (3.2a)
gives

0 1 _ YVu
e -

a unit vector field whose trajectories are the lines of steepest descent of u and whose
divergence is — in absolute value — the curvature of the level lines of u.

Crucially, equations (1.4) and (3.2), and hypothesis (3.1) imply that I is smooth
everywhere, even across the critical points of u.

As a consequence, the level lines of u are free from singular points, and the lines of

steepest descent have a smooth curvature. Since

V| Vu| {““‘ ”xy} Vu (3.3)
u

we infer also that | Vu| is continuously differentiable everywhere, even near the critical
points of u.

An inspection shows that
%|Vu|+(divl)|Vu|=0. (3.4)

In conclusion, if u has a critical point — the origin, say — then the critical points of

u must spread along the level line of u which crosses the origin. O
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