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1. INTRODUCTION AND STATEMENT OF THE RESULTS

Let ^ be an open bounded set in M", n > 2 and let V C L^Q) be real valued.
We consider real valued solutions u ̂  0 which satisfy

(1.1) ^u=Vu

in the distributional sense, that means

y u(-A -f- V)xdx = 0 for every ^ C C'^(^).

In a recent paper two of us [H02] investigated the local behaviour of such solu-
tions under rather mild assumptions on the potential V, namely we assumed that
V C A"'6^) for some 6 G (0,2), that is

(1.2) limsup / ^——K(g^^o
€loxWnJ\x-y\<e F-2/r 2 r u

where ^n denotes the characteristic function ofQ.
For 6 = 0 and n > 3 (1.2) defines the Kato class A"^) (for A'2(^), \x - T/]2-"

becomes | In \x — y\\) first introduced by Kato [K] and studied by Aizenman and
Simon [AS] in their seminal paper on the Harnack inequality. The class K1^'6 was
investigated by Simon [S] who showed that solutions to (1.1) with V € A"'5, 6 > 0
are Holder continuous. We note that unlike the more traditional Z^-conditions on
V, (1.2) allows for the physically important case of many body interactions (see
[AS], [S] for a discussion). But for 6 6 (0, 2), p > n/(2 — 6) it is easy to see that

(1.3) 27(n) C K^W.

One of the main results in [H02] was the following representation result.
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Theorem 0.
Suppose u^O is a real valued distributional solution of (1.1) and that V satisfies

(1.2). Let XQ 6 ̂ , then either there is a homogeneous harmonic polynomial PM ^ 0
of degree M € No such that

(1.4) U{x) = PM(X - Xo) + 0(\X - .,^+^(1^))

for all 6 ' < 6, or

(1.5) u == 0(\x - XQ^) for all a > 0.

Remarks 1.1.

(i) Originally this result was stated for n > 3. But V E K216^), ft C K2

implies V ^ I 6 K316^ x J ) where 7 denotes the identity on R1 and J an interval.
(We thank I. Herbst for pointing this out to us).

(ii) Representation results like Theorem 0 have been previously obtained for
more general types of equations, but under more restrictive assumptions on the
potential [B, CF, A, HS, R].

(iii) For a large class of potentials (e.g. V C 27, p > n/2, n > 3) it is known
that (1.5) implies u =. 0 (see e.g. [Ke]). This property is called a strong unique
continuation property. Unfortunately it has not as yet been shown for V C I^16

except for K3 [Sa].

In this paper we shall improve upon this result in various ways. Namely we
shall obtain interior estimates for solutions to (1.1) in the neighbourhood of zeros
(Theorem 1). These estimates will enable us to show that, roughly speaking, zero
sets are by one degree smoother than the corresponding solutions (Theorem 2). We
illustrate this with an explicit example in M2: Set

'-{ x - y for x <, 0
sinh x — y cosh x for x > 0

then u satisfies in the distributional sense Au = Vu in R2 with V == 0 for x < 0
and V = 1 for x > 0. The level sets of n, {(x, y) C M2: u{x, y) = c}, c E R, can be
represented by the family of functions

r . r — c for a* < 0
^^ttanh.r-^ for x > 0.

Yc is smooth away from x == 0. If c = 0, yo has a jump in the third derivative while
for c -^ 0, yc has a jump already in the second derivative. So the zero set is by one
degree smoother than the other level sets.

In the following we will consider not only V € A^'^Q) but also more regular
potentials namely V € C^'^Q), k € No and a G [0,1] where C^'0^) denote the
usual Holder spaces [GT]. We introduce the following norms:

\\V\\K^W = ^P / X n , ^ ^ d y .
o-eK^i.r-t/Ki |?/-.qn 2+
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For the Holder spaces C^10'^) we define for a G [0,1]

l^.n^upl^-^'l
.r.t/en l-c-i/r
.r^t/

and correspondingly

k-l

\V\k,a^ = V sup sup \D^V\ -h sup iD^Vlo a n
^0 1^1=^^ |/3|=A;

where we used the usual multi-index notation [GT]. If 9^1 is sufficiently smooth

(1.6) C^'^) C C^'^) C A^7^) C A"'^)

if 0 < 6 < 6 ' < 2 and k -h a < k ' + a' [GT]. Without loss we assume that

(1.7) ~B = Bi = [x C M" : |.r| < 1} C 0

and we set ||V||^ = ||^||^^(B) and \V\k^ = |V|fc,a.B.
Consider now a solution of (1.1) with V € A^'^Q). According to Theorem 0 we

can talk of the order of vanishing of u in a point XQ. We define

A f ^ ^ = {XQ G ^ : u has a zero of order > M in xo}.

Theorem 1. (A priori estimates)
Suppose that u is real valued and satisfies (1.1) in the distributional sense and

that B C 0.
(i) IfVe J^'6^) with 6 G (0,1] then there exists a constant C not depending

on u,
C=C(n,M^6, imi..,),

such that for every XQ G A^^ 0 Bi/2

(1.8) \u{x) - PM(X - xo)\ < G(sup \u\)\x - .col^ for x € B,
B

for some harmonic homogeneous polynomial PM of degree M.
(ii) IfVC A^'^Q) witA 6 C (1,2) then there exists a constant G not depending

on u,
c ^C^M^HVII^),

such that for every a-o € A/^^ 0 '0i/2

(1.9) \u(x) - PM(X - xo) - PM+I(X - xo)\ < G(sup \u\)\x - x^^6 for x € B,
B

for some harmonic homogeneous polynomials PM, PM+I of degree M, M + 1 re-
spec tiveJy.
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(in) IfVe Ck>a(^) for some k 6 No, a G (0, 1), tAeji there exists a constant C
not depending on u,

C=C(n,M,a,k,\V\k,a).

such that for every XQ G -A/S H ̂ 1/2

M+Jb+2

(1.10) I^^-PM^-^-PM+I^-^O)- ^ P.(.C-.CO)|

i=M+2

< G(sup \u\)\x - .co|M+fc+2+a for .r 6 B,
B

for some harmonic homogeneous polynomials PM, PM+I ^ith degree M, M -h 1
repectively and for some homogeneous polynomials pi of degree i.

Remarks 1.2.

(i) If M = 0, (1.8) and (1.10) is well known, see [S] respectively [GT]. Interior
estimates of this type (Schauder estimates) are ubiquitous in the theory of elliptic
partial differential equations.

(ii) As an immediate consequence we have with the aid of (1.3) the corresponding
Holder estimates for V 6 1^ with p > n/2.

(hi) The 6, respectively a dependence is sharp in (1.8, 1.9, 1.10) as can be easily
seen by working out radial examples.

(iv) The constants are in principle computable in the sense that our proofs
contain no steps based on mere existence results.

(v) In [H02] it was also shown that given any harmonic homogeneous polynomial
PM ^ 0 then there exists a neighbourhood of.co such that u satisfies (1.1) and (1.4)
for x —> XQ.

(vi) There are cases where a refined treatment is necessary for obtaining optimal
results, in particular V € C^'" for a = 0 or 1 and for the physically important
Coulombic case for which V 6 K " ' 9 6 ^ ) for every 6 < 1 [S]. For this case represen-
tation results like Theorem 0 have been recently obtained [H02S1], [H02S2].

The requirement a € (0,1) is the same as for the usual interior Schauder estimates
[GT]. For a == 0, a == 1 logarithms might turn up.

Theorem 1 will be the starting point for the proof of our results on the regularity
of nodal sets of solutions to (1.1). We first explain what we mean by the regularity
of a nodal set. Pick a solution u to (1.1) with V € A^'^O) for 6 > 0, and let

^(u)=^W\AfW

so that M(^) = {xo e ̂ w : u(x) == 0, |Vn(.ro)| + 0}. We say that Afi(u) is
locally a C16101 hypersurface for some k E No and a G [0,1] if for each XQ G A/i(u)
there is an e > 0 such that M\(u) H Be(a*o) can be represented as the graph of a
Ck10l function. Here B^{xo) = {x E IR" : \x - XQ\ < e}.
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Theorem 2. (Regularity of nodal sets)
Let 0 C IR" and u ̂  0 be a real valued distributional solution to Au = Vu with

V C I^'6^).
(i) IfVC A^(^), 6 C (0,1] then M(^) is locally a C 1 ' 6 hypersurface.
(ii) If V € J<"^(^), ^ G (1,2) theji A/iM is locally a C2'6-1 hypersurface.
(in) IfV C C^^) for some k € No, a G (0,1) then M(^) is ^ocaJJy a G3-^'0

Aypersurface.

Remarks 1.3.

(i) So indeed for the cases we treat the zero set of a solution to (1.1) is by one
degree smoother than the solution itself.

(ii) It should not be too difficult to extend the methods ofCaffarelli and Friedman
[CF] and Hardt and Simon [HS] to show that ̂ 2) has at most (n - 2)-dimensional
Hausdorff dimension.

(iii) Recently very interesting estimates on the (n - l)-dimensional Hausdorff
measure of the nodal sets of eigenfunctions of Laplacians on compact manifolds or
of Schrodinger operators on bounded domains have been obtained [DF,HS,CM,D].
Our present results imply that this question even makes sense for V 6 A^'^O) for
6 < 1, where the eigenfunctions are just in C096.

That nodal domains cannot have cusps has been shown for V G C°° in [H02a]
(iv) Starting from Theorem 1 also the sets .A/^\ k > 2, can be investigated.

This poses many interesting questions.
(v) For a very general class of potentials Kroger and Sturm [KS] have some

interesting results for quotients of positive solutions which might be related to our
results.

(vi) Weaker forms of Theorem 1 and 2 have been announced in [H02N].

2. REMARKS ON THE PROOFS OF THEOREM 1 AND THEOREM 2

Some of the ideas used here are already in [H02]. The new results however
require some rather technically involved iterations and we refer to the full paper
[H02N1] for details.

A few remarks might be appropriate here and we mention here mainly the case
V € J^'^) for 6 < 1.

First we assume that B C ^ and that the origin 0 C X^. So we want to show
that there is a homogeneous harmonic polynomial PM(-C) so that

(2.1) \u(x) - PM(X)\ < c(n, M, 6^ ||y||^)(sup H)^^
B

The full result can then be obtained by translation and scaling and some simple
estimates.

We use polar coordinates, x = ro/, and we assume for simplicity n > 3. A
homogeneous harmonic polynomial Pi of degree / can be written as

P i^y ^ •.k ^ (2/+n-2)(/+n-3)!p/ = r 2^ ^m^m with h(l) == ^———. _ _ ' — — — L

m=0 v f '
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where c\^rn are suitable constants and the orthonormal surface harmonics {y/,m}
I G No,m = 0 ,1 , . . .h{l) - 1 span ^(S'"-1). In polar coordinates -A = =j^ -
~n^l•§r•^ fr where -L2 is the Laplace Beltrami operator on the unit sphere S'""1

and we have L^Y^m = l{l -+- n - 2)V^.
We split u into two parts

u= PMU+QMU

where PM projects on the_y/^ with / < M and PM + QM = ^ on L^S'""1). So
we want to show that in B

TMU = PM + ̂  with |/^| < const(s}ip |u|)rM+5

B

and that
\QMU\ < const(sup [ul)^-^6.

B

For / < M we consider

/e,m=r^ / y^(o/)V(ra/)do/
J^'"-1

and we obtain in (0, R) ioi R < 1

^ .„ , Wl - 1) . ,,
I2-2) -J/,m + ————2———Am = ̂ ,m

where / ? / = / + ̂  and

(2.3) F^(r)=-r^ /> (Vn)(ro/)y^(a/)^.
J^n-l

(2.2) is obtained by considering J^n-i yf,m(^)(—A4-^)^^. It is an inhomogeneous
ODE so that fi^rn = Q,m^4- inhomogeneous solution. If we assume (see Theorem
0) that u ^ r^^ near the origin, then for / < M, c^rn = 0. To estimate the
inhomogeneous part we use variation of constants and we can bound |^m| in
terms of W{r) = f \V{ru))\du} and ^(r) = ^ t^-^W^dt. Through these terms
the ||^||n,<s comes into the estimates for PMU.

The second part, namely QMU, is harder to estimate. We introduce

^^r11"?^// IQM^I2^.
V Js^1

For this function we obtain using methods developed in [H02] from

- / (QMU^QMU^ = - / (QMu}QM{Vu)d^
Js^-1 Js71-1

XIII-6



INTERIOR HOLDER ESTIMATES 7

a non linear differential inequality for y?, namely

(2.4) -^ + (^M+^M^2 ^ ̂ ^ ̂ n-î  ̂  ̂  ̂  ̂ ^
r |.c|==r |.r|=r

(2.4) is to be understood in a suitably generalised sense. Since \QMU\ < \PMU\ + \u\
we can use differential inequality techniques to get a bound on y?, but since (2.4)
is non linear we get only, roughly speaking that \u\ ~ rM implies (p ^ y»M+5/2 ^
combine (2.4) with a subsolution estimate for QMU: For x 6 Bp{0),R <^ 1, and
r < I .R-HI

\(QMU)(X)\ < Gir-" / \(QMu)(y)\dy
J\x-y\<r

+G2 / {x-y^QM^u^dy
J\x-y\<r

'\x-y\<r

\X —
^-yKr

^From this inequality we obtain after some estimates

(2.5) sup \{QMU){X)\ < Csr-^ ( \{t)dt
|r|=r Jo

+C4(M,n) sup |u(2/)|^|| V\\K^B^W)
M<2r

The bounds obtained from (2.4) for (p and (2.5) permits us to set up an infinite
iteration which finally enables us to show that |OM^| < C(supQ \u\)rM'}'6. Of course
the above considerations present only the rough ideas of the proof of Theorem 1
for V € T^"'5^), 6 < 1. We note in particular that to obtain the explicit constant
on Theorem 1 we first show that for x G B

\u(x)\ < C^sup H^ for C = C(M, n, 6, \\V\\n,6)
B

and proceed then further by the sketched bootstrap arguments keeping control of
the constants to derive the refined estimates.

For ($6(1 ,2) the proof is essentially the same. We use the result for 6 6 (0,1) and
then split u such that u = ^M+I^+QM+I^ and investigate these terms separately.
For V G Ck1a(^) there are various simplifications due to the fact that we can derive
a differential inequality (analogous to (2.4)) for (p now given by

^= \ \ |QM+fc+2^|2^
V J5—1

which is linear. Here one uses also first the results for V G K " ' 1 6 for 6 G (1,2)
and then proceeds from C0101 to Ck1a inductively. On the other hand complications
arise since one has to expand also V in surface harmonics to obtain the full result.

The proof of Theorem 2 is based on the a priori estimates of Theorem 1. Basic
is the following Lemma
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Lemma:. Let u G C°(B) be a real valued function and M a closed subset ofB\i^.
If for some 6 G (0,1] and j G N there is a constant Co such that

\u{x) - p^\x - y)\ < Co(sup \u\)\x - y\^6 Vy C M
B

for x 6 B where the p^ are polynomials of degree j , then u 6 C316^).

The proof of this Lemma can be reduced to some classical one dimensional
estimates for polynomials. The Lemma tells us that for our case the solutions are
in Afii by M degrees smoother. Therefrom we derive an implicit funtion theorem:
Assuming that u(xo) == 0, Vu(.ro) = (0 , . . . 0,1), then the level set u{x) = 0 is locally
the graph of a continuous function ( p . This together with the regularity of u on A/^J
leads to the desired regularity properties of <p.
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