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Tunnel effect for semiclassical random walk
Jean-François Bony Frédéric Hérau Laurent Michel

Abstract
In this note we describe recent results on semiclassical random walk asso-

ciated to a probability density which may also concentrate as the semiclassical
parameter goes to zero. The main result gives a spectral asymptotics of the
close to 1 eigenvalues. This problem was studied in [1] and relies on a gen-
eral factorization result for pseudo-differential operators. In this note we just
sketch the proof of this second theorem. At the end of the note, using the
factorization, we give a new proof of the spectral asymptotics based on some
comparison argument.

1. Introduction

Let φ : Rd → R be a smooth function and let h ∈]0, 1] denote a small parameter
in all the paper. Under suitable assumptions specified later, the density e−φ(x)/h

is integrable and there exists Zh > 0 such that dµh(x) = Zhe
−φ(x)/hdx defines a

probability measure on Rd. We can associate to µh the Markov kernel th(x, dy)
given by

th(x, dy) = 1
µh(B(x, h))1|x−y|<hdµh(y). (1.1)

From the point of view of random walks, this kernel can be understood as follows:
assume at step n, the walk is in xn, then the point xn+1 is choosen in the small ball
B(xn, h), uniformly at random with respect to dµh. The probability distribution
at time n ∈ N of a walk starting from x is given by the kernel tnh(x, dy). The long
time behavior (n→∞) of the kernel tnh(x, dy) carries informations on the ergodicity
of the random walk, and has many practical applications (we refer to [11] for an
overview of computational aspects). Observe that if φ is a Morse function, then the
density e−φ/h concentrates at scale

√
h around minima of φ, whereas the moves of

the random walk are at scale h.
Another point of view comes from statistical physics and can be described as

follows. One can associate to the kernel th(x, dy) an operator Th acting on the
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space C0 of continuous functions going to zero at infinity, by the formula

Thf(x) =
∫
Rd
f(y)th(x, dy) = 1

µh(B(x, h))

∫
|x−y|<h

f(y)dµh(y).

This defines a bounded operator on C0, enjoying the Markov property (Th(1) = 1).
The transpose T?

h of Th is defined by duality on the set of bounded positive
measures M+

b (resp. bounded measures Mb). If dν is a bounded measure we have

T?
h(dν) =

(∫
Rd
1|x−y|<hµh(B(y, h))−1dν(y)

)
dµh. (1.2)

Assume that a particle in Rd is distributed according to a probability measure dν,
then T?

h(dν) represents its distribution after a move according to th(x, dy), and
the distribution after n steps is then given by (T?

h)n(dν). The existence of a limit
distribution is strongly related to the existence of an invariant measure. In the
present context, one can easily see that T?

h admits the following invariant measure

dνh,∞(x) = Z̃hµh(B(x, h))dµh(x),

where Z̃h is chosen so that dνh,∞ is a probability. The aim of the present paper will
be to prove the convergence of (T?

h)n(dν) towards dνh,∞ when n goes to infinity,
for any probability measure dν, and to get precise informations on the speed of
convergence.

Before going further, let us recall some elementary properties of Th that will be
usefull in the sequel. First, we can see easily from its definition that the operator Th

can be extended as a bounded operator both on L∞(dνh,∞) and L1(dνh,∞). From
the Markov property and the fact that dνh,∞ is stationary it is clear that

‖Th‖L∞(dνh,∞)→L∞(dνh,∞) = ‖Th‖L1(dνh,∞)→L1(dνh,∞) = 1.

Hence, by interpolation Th defines also a bounded operator of norm 1 on L2(Rd, dνh,∞).
Finally, observe that Th is selfadjoint on L2(dνh,∞) (thanks again to Markov prop-
erty).

Let us go back to the study of the sequence (T?
h)n and explain the topology we

use to study the convergence of this sequence. Instead of looking at this evolution
on the full set of bounded measures, we restrict the analysis by introducing the
following stable Hilbert space

Hh = L2(dνh,∞) =
{
f measurable on Rd such that

∫
|f(x)|2 dνh,∞ <∞

}
. (1.3)

for which we have a natural injection with norm 1, J : Hh ↪→Mb, when identifying
an absolutely continuous measure dνh = f(x)dνh,∞ with its density f . Using (1.2),
we can see easily that T?

h ◦ J = J ◦Th. From this identification T?
h (acting on Hh)

inherits the properties of Th:
T?
h : Hh −→ Hh is selfadjoint and continuous with operator norm 1. (1.4)

Hence, its spectrum is contained in the interval [−1, 1]. Moreover, we will see later
that −1 is sufficiently far from the spectrum. Since we are interested in the conver-
gence of (T?

h)n in L2 topology, it is then sufficient for our purpose to give a precise
description of the spectrum of Th near 1.

Let us now make some precise assumptions on the function φ.
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Hypothesis 1. We suppose that φ is a smooth function and that there exists
c, R > 0 and some constants Cα > 0, α ∈ Nd such that for all |x| ≥ R, we have

∀α ∈ Nd \ {0}, |∂αxφ(x)| ≤ Cα, |∇φ(x)| ≥ c and |φ(x)| ≥ c|x|.

Observe that the above assumption insures that dµh(x) = Zhe
−φ(x)/hdx is a prob-

ability measure.
As we will see later, the spectral analysis of the operator Th has many com-

mon points with the study of semiclassical Witten Laplacien on functions PW,(0) =
−h2∆ + |∇φ|2 − h∆φ. Under the above assumptions it is wellknown (see [7] and
references given there) that PW,(0) has compact resolvant. In the following we will
denote by (µk(h)) the increasing sequence of eigenvavalues of PW,(0). In the case
where φ is a Morse function one can show easily that its eigenvalues in any interval
of the form [0, o(h)] are in fact exponentially small (see [5]). More recently, under
some generic additional assumption a complete asymptotic expansion was proved
[2], [6]. In the same situation we studied in [1] the operator Th. Here we would like
to give a less precise statement in a more general situation. The following result
holds true without assuming that φ is a Morse function:

Theorem 1.1. Assume that Hypothesis 1 holds true. There exist δ, h0 > 0 such
that for h ∈]0, h0] we have σ(T?

h) ⊂ [−1 + δ, 1], σess(T?
h) ⊂ [−1 + δ, 1 − δ] and 1 is

a simple eigenvalue for the eigenstate νh,∞ ∈ Hh.
Moreover, denoting (λk(h)) the decreasing sequence of eigenvalues of Th and given

ν(h) such that 0 < ν(h)→ 0 when h→ 0, we have

λk(h) = µk(h)
2d+ 4(1 + oh→0(1)), (1.5)

uniformly with respect to k such that |µk(h)| ≤ ν(h)

Let us now give some corollary of this result when φ satisfies additional assump-
tions. In the following, we will denote by U the set of critical points of φ.

Hypothesis 2. We suppose that φ is a Morse function.

When Hypotheses 1 and 2 are satisfied, the set U is finite. We denote by U (0)

the set of minima of φ and U (1) the set of saddle points, i.e. the critical points with
index 1 (note that this set may be empty). We also introduce nj = ]U (j), j = 0, 1,
the number of elements of U (j).

Hypothesis 3. We suppose that the values φ(s)−φ(m) are distinct for any s ∈ U (1)

and m ∈ U (0).

Let us recall that under the above assumptions, there exists a labeling of minima
and saddle points: U (0) = {mk; k = 1, . . . , n0} and U (1) = {sj; j = 2, . . . , n1 + 1}
which permits to describe the low liying eigenvalues of the Witten Laplacian (see
[6], [9] for instance). Observe that the enumeration of U (1) starts with j = 2 since
we will need a fictive saddle point s1 = +∞.

From Theorem 1.1 and the asymptotic expansion of the µk(h) proved in Theorem
5.1 of [6], we deduce the following
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Theorem 1.2. Under Hypotheses 1, 2 and 3, there exist some constants α, h0 > 0
such that, for all k = 2, . . . , n0 and for any h ∈]0, h0],

1− λk(h) = h

(2d+ 4)πθk

√√√√∣∣∣∣∣detφ′′(mk)
detφ′′(sk)

∣∣∣∣∣e−2Sk/h(1 + o(1)),

where Sk := φ(sk)−φ(mk) (Aarhenius number) and−θk denotes the unique negative
eigenvalue of φ′′ at sk.

Observe that this theorem is very close to Theorem 1.2 in [1]. The only difference
is that the error term here is o(1) whereas it is O(h) in [1]. Since the proof to get
the o(1) error term is completely different and easyer, we decided to state and prove
here the weakest version. However, a proof of asymptotics with error term equal to
O(h) can be found in [1].

As an immediate consequence of Theorem and of the spectral theorem, we get that
the convergence to equilibrium holds slowly and that the system has a metastable
regime.

Corollary 1.3. Let dνh be probability measure in Hh and assume first that φ has
a unique minimum. Then, using that σ(T?

h) ⊂ [−1 + δ, 1− δh], it yields∥∥∥(T?
h)n(dνh)− dνh,∞

∥∥∥
Hh

= O(h)‖dνh‖Hh
. (1.6)

for all n & | ln h|h−1 which corresponds to the Ehrenfest time. But, if φ has now
several minima, we can write

(T?
h)n(dνh) = Πdνh +O(h)‖dνh‖Hh

, (1.7)
for all h−1| ln h| . n . e2Sn0/h. Here, Π can be taken as the orthogonal projector on
the n0 functions χk(x)e−(φ(x)−φ(mk))/h where χk is any cutoff function near mk.

On the other hand, we have, for any n ∈ N,∥∥∥(T?
h)n(dνh)− dνh,∞

∥∥∥
Hh

≤ (λ2(h))n‖dνh‖Hh
, (1.8)

where λ2(h) is described in Theorem 1.2. Note that this inequality is optimal. In par-
ticular, for n & | ln h|h−1e2S2/h, the right hand side of (1.8) is of order O(h)‖dνh‖Hh

.
Thus, for a reasonable number of iterations (which guaranties (1.6)), 1 seems to

be an eigenvalue of multiplicity n0; whereas, for a very large number of iterations,
the system returns to equilibrium. Then, (1.7) is a metastable regime.

Let us now explain how Theorem 1.1 can be used to get some information in
the case where φ is not necessary a Morse function. For instance, suppose that the
space dimension d is equal to 1. Assume that φ has a unique degenerate critical
point (say in x = 0) and that near the origin we have φ(x) = α

a
xa + O(xa+1) for

some a ∈ N∗ (observe that a is necessarily even since e−φ/h is integrable). Using
localization technics as in [13] we can prove that the spectral gap is asymptotically
equal to 1

6h
2− 2

aν1, where ν1 denotes the first non-zero eigenvalue of the operator

Na,α = −∂2
y + α2y2a−2 − α(a− 1)ya−2.

In the case case where φ has several critical points and that only one of them
is degenerate and of the preceding form, we could also get an asymptotics of the
exponentially small eigenvalues.
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Throughout this paper, we use semiclassical analysis (see [4], [12], or [15] for
expository books of this theory). Let us recall that a function m : Rd → R+ is
an order function if there exists N0 ∈ N and a constant C > 0 such that for all
x, y ∈ Rd, m(x) ≤ C〈x − y〉N0m(y). This definition can be extended to functions
m : Rd × Cd′ → R+ by identifying Rd × Cd′ with Rd+2d′ . Given on order function
m on T ∗Rd ' R2d, we will denote by S0(m) the space of semiclassical symbols on
T ∗Rd whose all derivatives are bounded by m and Ψ0(m) the set of corresponding
pseudodifferential operators. For any τ ∈]0,∞], and any order functionm on Rd×Cd

we will denote by S0
τ (m) the set of symbols which are analytic with respect to ξ in

the strip | Im ξ| < τ and bounded by some constant times m(x, ξ) in this strip. We
will denote by S0

∞(m) the intersection for τ > 0 of S0
τ (m). We denote by Ψ0

τ (m)
the set of corresponding operators. Eventually, we say that a symbol p is classical
if it admits an asymptotic expansion p(x, ξ;h) ∼ ∑j≥0 h

jpj(x, ξ). We will denote by
S0
τ,cl(m), S0

cl(m) the corresponding class of symbols.
We will also need some matrix valued pseudodifferential operators. Let Mp,q de-

note the set of real valued matrices with p rows and q columns and Mp = Mp,p. Let
A : T ∗Rd →Mp,q be a smooth function. We will say that A is a (p, q)-matrix-weight
if A(x, ξ) = (ai,j(x, ξ))i,j and for any i = 1 . . . , p and j = 1, . . . , q, ai,j is an order
function. If p = q, we will simply say that A is q-matrix-weight.

Given a (p, q)-matrix-weight A, we will denote by S0(A) the set of symbols
p(x, ξ) = (pi,j(x, ξ))i,j defined on T ∗Rd with values in Mp,q such that for all i, j,
pi,j ∈ S0(ai,j) and Ψ0(Mp,q) the set of corresponding pseudodifferential operators.
Obvious extensions of this definitions leads to the definition of matrix valued symbol
analytic w.r.t. to ξ and the corresponding operators: S0

τ (A) and Ψ0
τ (A). In the fol-

lowing, we shall mainly use the Weyl semiclassical quantization of symbols, defined
by

Op(p)u(x) = (2πh)−d
∫
T ∗Rd

eih
−1(x−y)ξp(x+ y

2 , ξ)u(y)dydξ (1.9)

for p ∈ S0(A). We shall also use the following notations all along the paper. Given
two pseudo differential operators A and B, we shall write A = B + Ψk(m) if the
difference A − B belongs to Ψk(m). At the level of symbols, we shall write a =
b+ Sk(m) instead of a− b ∈ Sk(m).

Let us introduce the d-matrix-weight, Ξ,A : T ∗Rd → Md given by Ai,j(x, ξ) =
(〈ξi〉〈ξj〉)−1, Ξi,j = δi,j〈ξi〉 and observe that (ΞA)i,j = 〈ξj〉−1. In the following the-
orem, we state an exact factorization result which will be the key point in our
approach.

Theorem 1.4. Let p(x, ξ;h) ∈ S0
∞(1) be a real valued symbol such that p(x, ξ;h) =

p0(x, ξ) + S0
∞(h) and let Ph = Op(p). Let φ satisfy Hypothesis 1 and assume that

the following assumptions hold true:

i) Ph(e−φ/h) = 0,

ii) for all x ∈ Rd, the function ξ ∈ Rd 7→ p(x, ξ;h) is even,

iii) ∀δ > 0, ∃α > 0, ∀(x, ξ) ∈ T ∗Rd, (d(x,U)2 + |ξ|2 ≥ δ =⇒ p0(x, ξ) ≥ α),

iv) for any critical point u ∈ U we have
p0(x, ξ) = |ξ|2 + |∇φ(x)|2 + r(x, ξ),
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with r(x, ξ) = O(|(x− u, ξ)|3) near (u, 0).

Then, for h > 0 small enough, there exists a symbol q ∈ S0(ΞA) such that Ph =
d∗φ,hQ

∗Qdφ,h with Q = Op(q). Moreover, q(x, ξ;h) = q0(x, ξ) + S0(hΞA) and for
any critical point u ∈ U , we have q0(u, 0) = Id. Eventually, if p ∈ S0

cl(1) then
q ∈ S0

cl(ΞA).

Let us now make some comments on the above theorem. As already mentioned, we
decided in this paper not to give results in the most general case so that technical
aspects do not hide the main ideas. Nevertheless, we would like to mention here
some possible generalizations of the preceding result (more can be found [1]).

First, it should certainly be possible to use more general order functions and to
prove a factorization results for symbols in other classes (for instance S0(〈(x, ξ)〉2).
This should allow to see the supersymmetric structure of the Witten Laplacian as a
special case of our result. In other words, the symbol p(x, ξ;h) = |ξ|2 + |∇φ(x)|2 −
h∆φ(x) would satisfy Assumptions i) to iv) above.

A more delicate question should be to get rid of the parity assumption ii). It is
clear that this assumption is not necessary (take q(x, ξ) = 〈ξ〉−2(Id + diag(ξi/〈ξ〉))
in the conclusion) but it seems difficult to prove a factorization result without it.
For instance, the operator hDx in dimension 1 can not been factorized smoothly
both left and right simultaneously.

In [10], Hérau, Hitrik and Sjöstrand proved that semiclassical differential operator
Ph of order 2 satisfying Ph(e−ϕ/h) = P ∗h (e−ψ/h) = 0 for some suitable ϕ, ψ admit
a supersymmetric structure Ph = d∗ψ,hAh(x)dϕ,h, where Ah(x) is a d × d matrix.
Nevertheless, as it is constructed Ah can grow exponentially with respect to h.
In Lemma 3.2 below, we show that if the parity assumption is fulfilled, then the
operator Ph can be factorized with a pseudo-differential operator Q̂ which is bounded
with respect to h (no exponential growth). However, getting some control on Ah in
a general setting is still an open (an interesting) question.

As it will be seen in the proof below, the operator Q (as well as Q∗Q) above is
not unique. Trying to characterize the set of all possible Q should be also a question
of interrest.

The plan of the note is the following. In the next section we analyse the structure
of operator T?

h and prove the first results on the spectrum stated in Theorem 1.1.
In section 3 we prove Theorem 1.4 and apply it to the case of the random walk
operator. In section 4, we prove Theorem 1.2.

2. Structure of the operator and first spectral results

In this section, we analyse the structure of the spectrum of the operator T?
h on the

space Hh = L2(dνh,∞). Introduce the MaxwellianMh defined by
dνh,∞ =Mh(x) dx so that Mh = Z̃hµh(Bh(x))Zhe−φ(x)/h, (2.1)

and make the following change of function
Uhu(x) :=M−1/2

h (x)u(x),
where Uh is unitary from L2(Rd) = L2(Rd, dx) to Hh. Denoting

Th := U∗hT?
hUh, (2.2)
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the conjugated operator acting in L2(Rd), we have

Thu(x) = ZhM−1/2
h (x)e−φ(x)/h

∫
Rd
1|x−y|<hM1/2

h (y)µh(B(y, h))−1u(y) dy

=
(
Zhe

−φ(x)/h

µh(B(x, h))

)1/2 ∫
|x−y|<h

u(y)
(
Zhe

−φ(y)/h

µh(B(y, h))

)1/2

dy.

We pose for the following

ah(x) = (αdhd)1/2
(
Zhe

−φ(x)/h

µh(B(x, h))

)1/2

,

and define the operator G by

Gu(x) = 1
αdhd

∫
|x−y|<h

u(y)dy (2.3)

where αd = vol(B(0, 1)) denotes the euclidean volume of the unit ball, so that with
these notations, operator Th reads

Th = ah ◦G ◦ ah, (2.4)
i.e.

Thu(x) = ah(x)G(ahu)(x).
We note that

a−2
h (x) = µh(B(x, h))eφ(x)/h

αdhdZh
= 1
αdhd

∫
|x−y|<h

e(φ(x)−φ(y))/hdy = eφ(x)/hG(e−φ/h)(x).
(2.5)

We now collect some properties on G and ah.
One very simple but fundamental observation is that G is a semiclassical Fourier

multiplier G = G(hD) = Op(G) where

∀ξ ∈ Rd, G(ξ) = 1
αd

∫
|z|<1

eiz·ξdz. (2.6)

The following lemmas are easy to prove (see [1] for details).
Lemma 2.1. The function G is analytic on Cd and enjoys the following properties:

i) G : Rd −→ R.

ii) There exists δ > 0 such that G(Rd) ⊂ [−1 + δ, 1]. Near ξ = 0, we have
G(ξ) = 1− βd|ξ|2 +O(|ξ|4),

where βd = (2d+4)−1. For any r > 0, sup|ξ|≥r |G(ξ)| < 1 and lim|ξ|→∞G(ξ) = 0.

iii) For all τ ∈ Rd, G(iτ) ∈ R, G(iτ) ≥ 1 and, for any r > 0, inf |τ |≥rG(iτ) > 1.

iv) For all ξ, τ ∈ Rd we have |G(ξ + iτ)| ≤ G(iτ).
Lemma 2.2. There exist c1, c2 > 0 such that c1 < ah(x) < c2 for all x ∈ Rd and
h ∈]0, 1]. Moreover, the functions ah and a−2

h belong to S0(1) and have classical
expansions ah = a0 + ha1 + · · · and a−2

h = a−2
0 + · · · , and

a0(x) = G(i∇φ(x))−1/2.

Eventually, there exist c0, R > 0 such that for all |x| ≥ R, a−2
h (x) ≥ 1 + c0 for h > 0

small enough.
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Since we want to study the spectrum near 1, it will be convenient to introduce
Ph := 1− Th. (2.7)

Using (2.4) and (2.5), we get
Ph = ah(Vh(x)−G(hDx))ah (2.8)

with Vh(x) = a−2
h (x) = eφ/hG(hDx)(e−φ/h). As a consequence of the previous lem-

mas, we get the following proposition for Ph.

Proposition 2.3. The operator Ph is a semiclassical pseudodifferential operator
whose symbol p(x, ξ;h) ∈ S0

∞(1) admits a classical expansion which reads p =
p0 + hp1 + · · · with

p0(x, ξ) = 1−G(i∇φ(x))−1G(ξ) ≥ 0.

We finish this subsection with the following proposition which is a part of Theorem
1.1.

Proposition 2.4. There exist δ, h0 > 0 such that the following assertions hold true
for h ∈]0, h0]. First, σ(Th) ⊂ [−1 + δ, 1] and σess(Th) ⊂ [−1 + δ, 1 − δ]. Eventually,
1 is a simple eigenvalue for the eigenfunctionM1/2

h .

Proof. We start by proving σ(Th) ⊂ [−1 + δ, 1]. From (1.4), we already know that
σ(Th) ⊂ [−1, 1]. Moreover, Lemma 2.1 ii) and iii) imply 0 ≤ a0(x) ≤ 1 and
G(Rd) ⊂ [−1 + ν, 1] for some ν > 0. Thus, we deduce that the symbol τh(x, ξ)
of the pseudodifferential operator Th ∈ Ψ0(1) satisfies

τh(x, ξ) ≥ −1 + ν +O(h).
Then, Gårding’s inequality yields

Th ≥ −1 + ν/2,
for h small enough. Summing up, we obtain σ(Th) ⊂ [−1 + δ, 1].

Let us prove the assertion about the essential spectrum. Let χ ∈ C∞0 (Rd; [0, 1]) be
equal to 1 on B(0, R), where R > 0 is as in Lemma 2.2. Since G = G(hD) ∈ Ψ0(1)
and lim|ξ|→∞G(ξ) = 0, the operator

Th − (1− χ)Th(1− χ) = χTh + Thχ− χThχ,
is compact. Hence, σess(Th) = σess((1 − χ)Th(1 − χ)). Now, for all u ∈ L2(Rd), we
have 〈

(1− χ)Th(1− χ)u, u
〉

=
〈
Gah(1− χ)u, ah(1− χ)u

〉
≤ ‖ah(1− χ)u‖2 ≤ (1 + c0)−1‖u‖2,

since ‖G‖L2→L2 ≤ 1 and |ah(1 − χ)| ≤ (1 + c0)−1/2 thanks to Lemma 2.1 ii) and
Lemma 2.2. As a consequence, there exists δ > 0 such that σess(Th) ⊂ [−1+δ, 1−δ].

To finish the proof, it remains to show that 1 is a simple eigenvalue. First, observe
that the distribution kernel k(n)

h (x, y) of T nh satisfies

k
(n)
h (x, y) ≥ εnh

−d1|x−y|<nh,

for some εn > 0. Thus, we can conclude by using Krein-Rutman theorem (see
Theorem XIII.43 of [14]). More details can be found in [1]. �
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3. Supersymmetric structure

In this section, we prove Theorem 1.4 and deduce that the operator Id−T?
h admits

a supersymmetric structure. We showed in the preceding section that Id−T?
h =

UhPhU∗h and before proving Theorem 1.4, we state and prove as a corollary the main
result on the operator Ph. Recall here that βd = (2d + 4)−1 and ΞA is the matrix
symbol defined by ΞAi,j = 〈ξj〉−1, for all i, j = 1, . . . , d.

Corollary 3.1. There exists a classical symbol q ∈ S0
cl(ΞA) such that the following

holds true. First Ph = L∗φLφ with Lφ = Qdφ,hah and Q = Op(q). Next, q = q0 +
Ψ0(hΞA) with q0(u, 0) = β

1/2
d Id for any critical point u ∈ U .

Proof. Since we know that Ph = ah(Vh(x)−G)ah, we only have to prove that β−1
d P̃h

satisfies the asumptions of Theorem 1.4, where
P̃h = Vh(x)−G(hD). (3.1)

Assumption i) is satisfied by construction.
Observe that thanks to Proposition 2.3, it is a pseudodifferential operator and

since variable x and ξ are separated, its symbol in any quantization is given by
p̃h(x, ξ) = Vh(x) − G(ξ). Moreover, Lemma 2.2 and Proposition 2.3 show that p̃h
admits a classical expansion p̃ = ∑∞

j=0 h
j p̃j with p̃j, j ≥ 1 depending only on x

and p̃0(x, ξ) = G(i∇φ(x))−G(ξ). Hence, it follows from Lemma 2.1 that p̃ satisfies
assumptions ii) and iii).

Finally, it follows from ii) of Lemma 2.1 that near (u, 0) (for any u ∈ U) we have
p̃(x, ξ) = βd(|ξ|2 + |∇φ(x)|2) +O(|(x− u, ξ)|3) + S0(h),

so that we can apply Theorem 1.4 . Taking into account the multiplication part ah
completes the proof for Ph. �

Now we can sketch the proof of Theorem 1.4. It goes in two steps. First we prove
that there exists a symbol q̂ ∈ S0

∞(A) such that Ph = d∗φ,hQ̂dφ,hw where Q̂ = Op(q̂).
In a second time we shall prove that the operator Q̂ can be chosen so that Q̂ = Q∗Q
for some pseudodifferential operator Q satisfying some nice properties.

Let us start with the first step. For this purpose we need the following lemma
whose proof can be found in [1].

Lemma 3.2. Let p ∈ S0
∞(1) and Ph = Op(p). Assume that for all x ∈ R, the

function ξ 7→ p(x, ξ;h) is even. Suppose also that Ph(e−φ/h) = 0. Then there exists
q̂ ∈ S0

∞(A) such that Ph = d∗φ,hQ̂dφ,h with Q̂ = Op(q̂). Moreover, if p has a principal
symbol, then so does q̂ and if p ∈ S0

∞,cl(1) then q̂ ∈ S0
∞,cl(A) .

Remark 3.3. Since Ph(e−φ/h) = 0, it is quite clear that Ph can be factorized by
dφ,h on the right. On the other hand, the fact that Ph can be factorized by d∗φ,h
on the left necessarily implies that P ∗h (e−φ/h) = 0. At a first glance, there is no
reason for this identity to hold true since we don’t suppose in the above lemma
that Ph is self-adjoint. This is actually verified for the following reason. Start from
Op(p)(e−φ/h) = 0, then taking the conjugate and using the fact that φ is real we get

Op(p(x,−ξ))(e−φ/h) = 0.
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Hence, the parity assumption on p implies that Op(p)∗(e−φ/h) = 0.

Let us apply Lemma 3.2 to Ph = Op(p). Then, there exists a symbol q̂ ∈ S0
∞(A)

such that
Ph = d∗φ,hQ̂dφ,h,

with Q̂ = Op(q̂) and q̂ = q̂0 + S0(h). Now the strategy is the following. We will
modify the operator Q̂ so that the new Q̂ is selfadjoint, non-negative and Q̂ can be
written as the square of a pseudodifferential operator Q̂ = Q∗Q.

First observe that since Ph is selfadjoint,

Ph = 1
2(Ph + P ∗h ) = d∗φ,h

Q̂+ Q̂∗

2 dφ,h,

so that we can assume in the following that Q̂ is selfadjoint. This means that the
partial operators Q̂j,k = Op(q̂j,k) verify Q̂∗j,k = Q̂k,j (or at the level of symbols
q̂k,j = q̂j,k). For k = 1, . . . , d, let us denote dkφ,h = h∂k + ∂kφ(x). Then

Ph =
d∑

j,k=1
(djφ,h)∗Q̂j,kd

k
φ,h. (3.2)

We would like to take the square root of Q̂ and show that it is still a pseudo-
differential operator. The problem is that we don’t even know if Q̂ is non-negative.
Nevertheless, we can use the non-uniqueness of operators Q̂ such that (3.2) holds
to go to a situation where Q̂ is close to a diagonal operator with non-negative par-
tial operators on the diagonal. The starting point of this strategy is the following
commutation relation

∀j, k ∈ {1, . . . , d},
[
djφ,h, d

k
φ,h

]
= 0, (3.3)

which holds true since djφ,h = e−φ/hh∂je
φ/h and thanks to Schwarz Theorem. Hence,

for any bounded operator B on L2(Rd), we have

Ph = d∗φ,hQ̂
moddφ,h =

d∑
j,k=1

(djφ,h)∗Q̂mod
j,k d

k
φ,h, (3.4)

with Q̂mod = Q̂ + B for some B being of the following form : For any j0, k0, n ∈
{1, . . . , d}, the operator B(j0, k0, n;B) = (Bj,k)j,k=1,...,d is defined by

Bj,k = 0 if (j, k) /∈ {(n, n), (j0, k0), (k0, j0)}
Bj0,k0 = −(dnφ,h)∗Bdnφ,h and Bk0,j0 = (Bj0,k0)∗ (3.5)

Bn,n = (dj0φ,h)∗Bdk0
φ,h + (dk0

φ,h)∗B∗d
j0
φ,h.

When j0 = k0, we use the convention that Bj0,j0 = −(dnφ,h)∗(B +B∗)dnφ,h.

Recall that the d-matrix-weights A and ΞA are given by Aj,k = 〈ξj〉−1〈ξk〉−1 and
(ΞA)j,k = 〈ξk〉−1. Using the preceding remark, we can prove the following

Lemma 3.4. Let Q̂ = Op(q̂) where q̂ ∈ S0(A) is a Hermitian symbol such that
q̂(x, ξ;h) = q̂0(x, ξ) + S0(hA). We denote P = d∗φ,hQ̂dφ,h and p(x, ξ;h) = p0(x, ξ) +
S0(h) ∈ S0(1) its symbol. Assume that the following assumptions hold:

(A1) ∀δ > 0, ∃α > 0, ∀(x, ξ) ∈ T ∗Rd, (|ξ|2 + d(x,U)2 ≥ δ =⇒ p0(x, ξ) ≥ α).
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(A2) Near (u, 0) for any critical point u ∈ U , we have
p0(x, ξ) = |ξ|2 + |∇φ(x)|2 + r(x, ξ), (3.6)

with r(x, ξ) = O(|(x− u, ξ)|3).

Then, for h small enough, there exists a symbol q ∈ S0(ΞA) such that
Ph = d∗φ,hQ

∗Qdφ,h,

with Q = Op(q), q = q0 + S0(h) and q0(u, 0) = Id for any u ∈ U . Moreover,
Q = F Op(Ξ−1) for some F ∈ Ψ0(1) invertible and self-adjoint with F−1 ∈ Ψ0(1).
Eventually, if q̂ ∈ S0

cl(A) then q ∈ S0
cl(ΞA).

Proof. We just sketch the proof and refer to [1] for details. Given ε > 0, let
w0, w1, . . . , wd ∈ S0(1) be non-negative functions such that

w0 + w1 + · · ·+ wd = 1, (3.7)
whose support satisfies

supp(w0) ⊂
{
|ξ|2 + |∇φ(x)|2 ≤ 2ε

}
,

and, for all ` ≥ 1,

supp(w`) ⊂
{
|ξ|2 + |∇φ(x)|2 ≥ ε and |ξ`|2 + |∂`φ(x)|2 ≥ 1

2d
(
|ξ|2 + |∇φ(x)|2

)}
.

Let us decompose Q̂ according to these truncations

Q̂ =
d∑
`=0

Q̂`, (3.8)

with Q̂` := Op(w`q̂) for all ` ≥ 0. We will modify each of the operators Q̂` separately,
using the modifiers

B(j0, k0, n; β) := B(j0, k0, n; Op(β)),
where for j0, k0, n ∈ {1, . . . , d} and β ∈ S0(〈ξj0〉−1〈ξk0〉−1〈ξn〉−2) the right hand side
is defined by (3.5). Let M (A) ⊂ Ψ0(A) be the vector space of bounded operators
on L2(Rd)d generated by such operators. Then, (3.4) says exactly that

Ph = d∗φ,h(Q̂+M)dφ,h, (3.9)
for anyM∈M (A).
Step 1. We first observe that near U × {0}, there is no modification needed.

Indeed, writing q̂ = q̂0+S0(hA) and using (3.2), (3.6) together with Taylor expansion
we see easily that for all u ∈ U , q̂0(u, 0) = Id. Hence

Q̆0 := Q̂0 = Op(q̆0) + Ψ0(hA), (3.10)
where q̆0 ∈ S0(A) satisfies

q̆0(x, ξ) = w0(x, ξ)
(

Id +ρ(x, ξ)
)
, (3.11)

with ρ ∈ S0(A) such that ρ(x, ξ) = O(|(d(x,U), ξ)|) .
Step 2. We remove the antidiagonal terms away from the origin. More precisely,

we show that there exist someM` ∈M (A) and some diagonal symbols q̃` ∈ S0(A)
such that

Q̃` := Q̂` +M` = Op(w`q̃`) + Ψ0(hA), (3.12)
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for any ` ∈ {1, . . . , d}. In order to do that we define

βj0,k0,`(x, ξ) := w`(x, ξ)q̂j0,k0(x, ξ)
|ξ`|2 + |∂`φ(x)|2

for any j0, k0, ` ∈ {1, . . . , d} with j0 6= k0, let βj0,k0,`. Thanks to the support prop-
erties of w`, we have βj0,k0,` ∈ S0(〈ξj0〉−1〈ξk0〉−1〈ξ`〉−2) so that B∞(j0, k0, `; βj0,k0,`)
belongs to M (A). Then, it follows from symbolic calculus that

M` :=
∑
j0 6=k0

B∞(j0, k0, `; βj0,k0,`),

enjoys the required properties.

Step 3.We prove that we can modify each Q̃` in order that its diagonal coefficients
are suitably bounded from below. More precisely, we claim that there exist c > 0
and M̃` ∈M (A) such that

Q̆` := Q̃` + M̃` = Op(q̆`) + Ψ0(hA), (3.13)

with q̆` diagonal and q̆`i0,i0(x, ξ) ≥ cw`(x, ξ)〈ξi0〉−2 for all i0 ∈ {1, . . . , d}.
For `, i0 ∈ {1, . . . , d}, let βi0,` be defined by

βi0,`(x, ξ) := w`(x, ξ)
2
(
|ξ`|2 + |∂`φ(x)|2

)(q̃`i0,i0(x, ξ)− γ

1 + |ξi0|2 + |∂i0φ(x)|2

)
,

where γ > 0 will be specified later. The symbol βi0,` belongs to S0(〈ξi0〉−2〈ξ`〉−2) so
that B∞(i0, i0, `; βi0,`) ∈M (A). Then, pseudo differential calculus shows that

M̃` :=
∑
i0 6=`
B∞(i0, i0, `; βi0,`),

satisfies (3.13).

Step 4. Consider Q̆ = ∑
` Q̆l and let E = Op(Ξ)Q̆Op(Ξ). Then Q̆ = Q∗Q with

Q = E1/2 Op(Ξ−1). From the above construction we can show that E = Op(e) with

e(x, ξ;h) ≥ c Id . (3.14)

Thus, it follows from Theorem 4.8 in [7] that both E1/2 and Q belongs to S0(1)
which completes the proof of Theorem 1.4. �

4. From P to the usual Witten Laplacian

In this section, we give a detailed proof of Theorem 1.1. Here Ph denotes again
U∗h(I − Th)Uh. As already mentioned, this proof is an original piece of work.

On the total De Rham complex, we define

PW = d∗φ,hdφ,h + dφ,hd
∗
φ,h,

the semiclassical Witten Laplacian, and PW,(k) its restriction to the k-forms. These
operators have been intensively studied (see e.g. [3], [8], [6], . . . ), and a lot is known
concerning their spectral properties. In particular, from (14.9) in [7], we know that

PW,(1) = PW,(0) ⊗ Id +Ψ0(h).
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In this section, we compare the small eigenvalues of Ph with those of PW,(0). This
idea is natural since a0(u) = 1 and q0(u, 0) = Id for all critical points u ∈ U , and
PW,(0) is then the operator Ph with the coefficients ah and Q frozen at 1 and Id.

Let f ∈ C∞0 (R; [0, 1]) equal to 1 on [−1, 1]. For ε > 0, we define fε(λ) = f(λ/ε).
In the sequel, δ > 0 and C > 1 will design constants which may change from line
to line but do not depend on ε and h. On the other hand, the subscript ε (as in
Cε > 1) will point out that the quantity may depend on ε (but is independent or
uniform in h). Finally, to shorten the equations, we will sometimes use the notation
g(•) = g(PW,(•)) for a function g on R and for k ∈ N, fk(•) will denote f (•) to the
power k.

Lemma 4.1. We have

ahF−(PW,(0))ah ≤ Ph ≤ ahF+(PW,(0))ah,

where

F−(λ) = λ
(
f 2
ε (λ)(1− C

√
ε− Cεh) + (λ+ 1)−1(1− fε(λ))2(δ − C

√
ε− Cεh)

)
,

F+(λ) = λ
(
f 2
ε (λ)(1 + C

√
ε+ Cεh) + 2fε(λ)(1− fε(λ)) + Cε(1− fε(λ))2

)
.

Proof. We can decompose

Q∗Q = f (1)
ε Q∗Qf (1)

ε + f (1)
ε Q∗Q(1− f (1)

ε ) + (1− f (1)
ε )Q∗Qf (1)

ε + (1− f (1)
ε )Q∗Q(1− f (1)

ε )
= I + II + III + IV. (4.1)

We first estimate I. Let f ≺ g ∈ C∞0 (R; [0, 1]). Using PW,(1) = PW,(0)⊗Id +Ψ0(h),
the formula of the functional calculus and the functional calculus of pseudodifferen-
tial operators, we can write

gε(PW,(1)) = gε(PW,(0))⊗ Id +
∫
∂g̃ε(z)(PW,(1) − z)−1Ψ0(h)(PW,(0) ⊗ Id−z)−1dz

= Op(gε(pW,(0)))⊗ Id +R, (4.2)

where ‖R‖ ≤ Cεh as an operator from H−2
h (Rd) to L2(Rd) and pW,(0) denotes the

principal symbol of PW,(0). Moreover, from Theorem 1.4, we have Q∗Q = Id +Q̃ +
Ψ0(h) where the remainder term Q̃ is a pseudodifferential operator in Ψ0(1) whose
symbol q̃ vanishes at (u, 0), u ∈ U . Then,

gε(PW,(1))Q∗Q = gε(PW,(1)) + Op(gε(pW,(0))q̃) +Oε(h). (4.3)

Recall now that, for a ∈ S0(1),∥∥∥Op(a)
∥∥∥
L2(Rd)→L2(Rd)

= ‖a‖L∞(R2d) +O(h),

(see e.g. [15, Theorem 13.13]). Thus, using that gε(pW,(0)) is supported in a neighbor-
hood of size

√
ε of (c, 0) at which q̃ vanishes, it yields ‖Op(gε(pW,(0))q̃)‖ ≤ C

√
ε+Cεh

and (4.3) implies ∥∥∥gε(PW,(1))(Q∗Q− Id)
∥∥∥ ≤ C

√
ε+ Cεh. (4.4)

Using that f (1)
ε Q∗Qf (1)

ε = f (1)
ε g(1)

ε Q∗Qf (1)
ε , this estimate gives

f 2(1)
ε (1− C

√
ε− Cεh) ≤ I ≤ f 2(1)

ε (1 + C
√
ε+ Cεh). (4.5)
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We now treat II and III. Writing

f (1)
ε Q∗Q(1− f (1)

ε ) = f (1)
ε (1− f (1)

ε )

+ f (1)
ε gε(PW,(1))

(
Q∗Q− Id

)
(PW,(1) + 1)1/2(PW,(1) + 1)−1/2(1− f (1)

ε ),

the Cauchy–Schwartz inequality gives∣∣∣〈(f (1)
ε (Q∗Q− 1)(1− f (1)

ε )
)
u, u

〉∣∣∣
≤
∥∥∥gε(PW,(1))

(
Q∗Q− Id

)
(PW,(1) + 1)1/2

∥∥∥ (4.6)(∥∥∥f (1)
ε u

∥∥∥2
+
∥∥∥(PW,(1) + 1)−1/2(1− f (1)

ε )u
∥∥∥2)

.

Proceeding as in (4.4) and using that (PW,(1) + 1)1/2 is bounded as operator from
L2(Rd) to H−1

h (Rd), we get∥∥∥gε(PW,(1))
(
Q∗Q− Id

)
(PW,(1) + 1)1/2

∥∥∥ ≤ C
√
ε+ Cεh.

Thus, (4.6) implies

2f (1)
ε (1−f (1)

ε )−
(
f 2(1)
ε + (PW,(1) + 1)−1(1− f (1)

ε )2
)
(C
√
ε+ Cεh)

≤ II + III ≤ 2f (1)
ε (1− f (1)

ε ) +
(
f 2(1)
ε + (PW,(1) + 1)−1(1− f (1)

ε )2
)
(C
√
ε+ Cεh)

and then, using f(1− f) ≥ 0,

−f 2(1)
ε (C

√
ε+ Cεh)− (PW,(1) + 1)−1(1− f (1)

ε )2(C
√
ε+ Cεh)

≤ II + III ≤ 2f (1)
ε (1− f (1)

ε ) + f 2(1)
ε (C

√
ε+ Cεh) + Cε(1− f (1)

ε )2.
(4.7)

It remains to study IV . From Lemma 3.4, we have Q = F Op(Ξ−1) and then

〈Q∗Qu, u〉 =
∥∥∥F Op(Ξ−1)u

∥∥∥2
≥ δ‖Op(Ξ−1)u‖2, (4.8)

for some δ > 0. For the last inequality, we have used that F−1 is uniformly bounded
since it belongs to Ψ0(1). Moreover, using 0 ≤ PW,(1) = −h2∆⊗ Id +O(1), we get

Op(Ξ−2) ≥ (−h2∆ + 1)−1 ⊗ Id ≥ δ(PW,(1) + 1)−1.

Thus, (4.8) yields
Q∗Q ≥ δ(PW,(1) + 1)−1

On the other hand, using Q ∈ Ψ0(1), we deduce Q∗Q ≤ C. These two estimates
imply

δ(PW,(1) + 1)−1(1− f (1)
ε )2 ≤ IV ≤ C(1− f (1)

ε )2. (4.9)
Combining (4.1) with (4.5), (4.7) and (4.9), we obtain

d∗φ,h
(
F−(λ)/λ

)
(PW,(1))dφ,h ≤ d∗φ,hQ

∗Qdφ,h ≤ d∗φ,h
(
F+(λ)/λ

)
(PW,(1))dφ,h.

Using now the classical intertwining relation PW,(1)dφ,h = dφ,hP
W,(0) and PW,(0) =

d∗φ,hdφ,h, this estimate eventually implies

F−(PW,(0)) ≤ d∗φ,hQ
∗Qdφ,h ≤ F+(PW,(0)),

and the lemma follows. �
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In Lemma 4.1, we have “removed” Q∗Q from the operator P . We will now “re-
move” ah using the same strategy. We define the self-adjoint operators

P̃± := F
1/2
± (PW,(0))a2

hF
1/2
± (PW,(0)),

and we have the following standard result.
Lemma 4.2. The operators ahF±(PW,(0))ah and P̃± have same spectrum. Moreover,
their eigenvalues have the same multiplicity.

Proof. The fact that they have the same spectrum outside of 0 is a consequence
of the classical relation (1 − BA)−1 = 1 + B(1 − AB)−1A. Moreover, if u is an
eigenvector of AB for the eigenvalue λ 6= 0, then Bu 6= 0 is an eigenvector of
BA for the same eigenvalue. Thus, the multiplicity of the non-zero eigenvalues of
ahF±(PW,(0))ah and P̃± are the same. Finally, using that ah, a−1

h ∈ L∞(Rd), the
vector spaces ker(ahF±(PW,(0))ah) = ker(F 1/2

± (PW,(0))ah) = a−1
h ker(F 1/2

± (PW,(0)))
and ker(P̃±) = ker(ahF 1/2

± (PW,(0))) = ker(F 1/2
± (PW,(0))) have the same dimension.

�

As in Lemma 4.1, we can control a2
h using the following

Lemma 4.3. We have
f 2(0)
ε (λ)(1− C

√
ε− Cεh) + (1− f (0)

ε (λ))2(δ − C
√
ε− Cεh)

≤ a2
h ≤ f 2(0)

ε (1 + C
√
ε+ Cεh) + 2f (0)

ε (1− f (0)
ε ) + Cε(1− f (0)

ε )2.
(4.10)

In particular,
G−(PW,(0)) ≤ P̃− and P̃+ ≤ G+(P (0)), (4.11)

with
G−(λ) = F−(λ)

(
f 2
ε (λ)(1− C

√
ε− Cεh) + (1− fε(λ))2(δ − C

√
ε− Cεh)

)
,

G+(λ) = F+(λ)
(
f 2
ε (λ)(1 + C

√
ε+ Cεh) + 2fε(1− fε(λ)) + C(1− fε(λ))2

)
.

Proof. As in (4.1), we write
a2
h = f (0)

ε a2
hf

(0)
ε + f (0)

ε a2
h(1− f (0)

ε ) + (1− f (0)
ε )a2

hf
(0)
ε + (1− f (0)

ε )a2
h(1− f (0)

ε )
= I + II + III + IV. (4.12)

Working as in (4.5) and using that the function a2
h ∈ Ψ0(1) satisfies a2

h = 1+ã+Ψ0(h)
where ã(u) = 0 for all u ∈ U , we obtain

f 2(0)
ε (1− C

√
ε− Cεh) ≤ I ≤ f 2(0)

ε (1 + C
√
ε+ Cεh). (4.13)

The same way, as in (4.7), we get
−f 2(0)

ε (C
√
ε+ Cεh)− (1− f (0)

ε )2(C
√
ε+ Cεh)

≤ II + III ≤ 2f (0)
ε (1− f (0)

ε ) + f 2(0)
ε (C

√
ε+ Cεh) + Cε(1− f (0)

ε )2.
(4.14)

Eventually, since δ ≤ a2
h ≤ C, we directly obtain
δ(1− f (0)

ε )2 ≤ IV ≤ C(1− f (0)
ε )2. (4.15)

Combining (4.12) with (4.13)–(4.15), we obtain (4.10). Finally, (4.11) follows directly
from the definition of P̃± and (4.10). �
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Combining the previous lemmas, we obtain the following proposition which is
exactly the second part of Theorem 1.2.

Proposition 4.4. Let 0 < ν(h)→ 0 as h→ 0. We have

λj(Ph) = λj(PW,(0))(1 + oh→0(1)),
uniformly for j such that λj(PW,(0)) ≤ ν(h).

Proof. We first recall the maxi-min principle (see [14, Theorem XIII.1]). For selfad-
joint operators A bounded from below, we have

λj(A) = sup
dimE=j−1

inf
u∈E⊥, ‖u‖=1

〈Au, u〉, (4.16)

where λj(A) is either the j-th eigenvalue (counted with the multiplicity) or the
bottom of the essential spectrum. Thus, Lemma 4.1, Lemma 4.2 and Lemma 4.3
give

λj
(
G−(PW,(0))

)
≤ λj(P̃−) = λj

(
ahF−(PW,(0))ah

)
≤ λj(Ph) ≤ λj

(
ahF+(PW,(0))ah

)
= λj(P̃+) ≤ λj

(
G+(PW,(0))

)
.

(4.17)
for all j ∈ N \ {0}.

Looking now to the particular form of G±, one can verify that there exists δ > 0
with the following properties. For ε and then h small enough, G±(0) = 0, G± is
strictly increasing in [0, ε] and G± ≥ δε on [ε,+∞[. This implies that, for ε and
then h small enough,

λj
(
G±(PW,(0))

)
= G±

(
λj(PW,(0))

)
for all j such that λj(PW,(0)) ≤ ν(h). Using then that fε(λj(PW,(0))) = 1, we then
deduce

λj
(
G±(PW,(0))

)
= λj(PW,(0))(1± C

√
ε± Cεh)2. (4.18)

Thus, (4.17) and (4.18) imply that, for ε and then h small enough,
λj(PW,(0))(1− C

√
ε− Cεh)2 ≤ λj(P ) ≤ λj(PW,(0))(1 + C

√
ε+ Cεh)2,

for all j such that λj(PW,(0)) ≤ ν(h). Since the quantities λj(PW,(0)) and λj(Ph) do
not depend on ε, this estimate implies the proposition. �
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