Mersenne banner

Journées Équations aux dérivées partielles

Browse issues
or
  • All
  • Author
  • Title
  • References
  • Full text
NOT
Between and
  • All
  • Author
  • Title
  • Date
  • References
  • Full text
  • Previous
  • Browse issues
  • Volume (2012)
  • Talk no. 9
  • Next
Schrödinger maps
Daniel Tataru
Journées équations aux dérivées partielles (2012), Talk no. 9, 11 p.
  • Abstract

The Schrödinger map equation is a geometric Schrödinger model, closely associated to the harmonic heat flow and to the wave map equation. The aim of these notes is to describe recent and ongoing work on this model, as well as a number of related open problems.

  • Article information
  • Export
  • How to cite
Published online: 2013-12-02
DOI: 10.5802/jedp.92
  • BibTeX
  • RIS
  • EndNote
@article{JEDP_2012____A9_0,
     author = {Daniel Tataru},
     title = {Schr\"odinger maps},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:9},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2012},
     doi = {10.5802/jedp.92},
     language = {en},
     url = {https://jedp.centre-mersenne.org/articles/10.5802/jedp.92/}
}
TY  - JOUR
TI  - Schrödinger maps
JO  - Journées équations aux dérivées partielles
N1  - talk:9
PY  - 2012
DA  - 2012///
PB  - Groupement de recherche 2434 du CNRS
UR  - https://jedp.centre-mersenne.org/articles/10.5802/jedp.92/
UR  - https://doi.org/10.5802/jedp.92
DO  - 10.5802/jedp.92
LA  - en
ID  - JEDP_2012____A9_0
ER  - 
%0 Journal Article
%T Schrödinger maps
%J Journées équations aux dérivées partielles
%Z talk:9
%D 2012
%I Groupement de recherche 2434 du CNRS
%U https://doi.org/10.5802/jedp.92
%R 10.5802/jedp.92
%G en
%F JEDP_2012____A9_0
Daniel Tataru. Schrödinger maps. Journées équations aux dérivées partielles (2012), Talk no. 9, 11 p. doi : 10.5802/jedp.92. https://jedp.centre-mersenne.org/articles/10.5802/jedp.92/
  • References
  • Cited by

[1] I. Bejenaru, A. Ionescu, C. Kenig, D. Tataru, Global Schrödinger maps, Annals of Math., to appear

[2] I. Bejenaru, A. Ionescu, C. Kenig, D. Tataru, Equivariant Schrödinger Maps in two spatial dimensions, preprint | MR | Zbl

[3] I. Bejenaru, D. Tataru, Near soliton evolution for equivariant Schrödinger Maps in two spatial dimensions, AMS Memoirs, to appear

[4] S. Gustafson, K. Nakanishi, T. Tsai, Asymptotic stability, concentration, and oscillation in harmonic map heat-flow, Landau-Lifshitz, and Schroedinger maps on ℝ 2 ., preprint available on arxiv. | Zbl

[5] J. Krieger, W. Schlag Concentration compactness for critical wave maps, EMS Monographs in Mathematics, 2012 | MR | Zbl

[6] F. Merle, P. Raphaël, I. Rodnianski, Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map, preprint. | MR

[7] Sterbenz, Jacob, Tataru, Daniel . Regularity of wave-maps in dimension 2+1. Comm. Math. Phys. 298 (2010), no. 1, 231–264. | MR | Zbl

[8] Sterbenz, Jacob, Tataru, Daniel . Energy dispersed large data wave maps in 2+1 dimensions. Comm. Math. Phys. 298 (2010), no. 1, 139–230. | MR | Zbl

[9] T. Tao, Gauges for the Schrödinger map, http://www.math.ucla.edu/ tao/preprints/Expository (unpublished).

[10] T. Tao. Global regularity of wave maps VII. Control of delocalised or dispersed solutions arXiv:0908.0776

Cited by Sources:

Web publisher : Published by : Developed by :
  • Follow us
ISSN : 0752-0360 - e-ISSN : 2118-9366