@article{JEDP_1994____A14_0, author = {Mikhail Sh. Birman}, title = {Discrete spectrum of the periodic elliptic operator with a differential perturbation}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {14}, publisher = {\'Ecole polytechnique}, year = {1994}, doi = {10.5802/jedp.469}, mrnumber = {1298685}, language = {en}, url = {https://jedp.centre-mersenne.org/articles/10.5802/jedp.469/} }
TY - JOUR TI - Discrete spectrum of the periodic elliptic operator with a differential perturbation JO - Journées équations aux dérivées partielles PY - 1994 DA - 1994/// PB - École polytechnique UR - https://jedp.centre-mersenne.org/articles/10.5802/jedp.469/ UR - https://www.ams.org/mathscinet-getitem?mr=1298685 UR - https://doi.org/10.5802/jedp.469 DO - 10.5802/jedp.469 LA - en ID - JEDP_1994____A14_0 ER -
Mikhail Sh. Birman. Discrete spectrum of the periodic elliptic operator with a differential perturbation. Journées équations aux dérivées partielles (1994), article no. 14, 4 p. doi : 10.5802/jedp.469. https://jedp.centre-mersenne.org/articles/10.5802/jedp.469/
1. S. Alama, M. Avellaneda, P.A. Deift, R. Hempel, On the existence of eigenvalues of a divergence form operator A + λB in a gap of σ(A), Asymptotic Analysis 8 (4) (1994), 311-344. | MR: 95g:47069 | Zbl: 0806.47042
2. M.Sh. Birman, Discrete spectrum of the periodic Schrödinger operator for non-negative perturbations, Operator Theory: Advances and Applications, vol. 70, Birkhäuser, Basel, 1994. | MR: 1308998 | Zbl: 0828.34075
Cited by Sources: