@article{JEDP_1991____A7_0, author = {Luc Robbiano}, title = {Th\'eor\`eme d'unicit\'e adapt\'e au contr\^ole des solutions des probl\`emes hyperboliques}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {7}, publisher = {\'Ecole polytechnique}, year = {1991}, doi = {10.5802/jedp.409}, zbl = {0779.93057}, language = {fr}, url = {https://jedp.centre-mersenne.org/articles/10.5802/jedp.409/} }
TY - JOUR TI - Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques JO - Journées équations aux dérivées partielles PY - 1991 DA - 1991/// PB - École polytechnique UR - https://jedp.centre-mersenne.org/articles/10.5802/jedp.409/ UR - https://zbmath.org/?q=an%3A0779.93057 UR - https://doi.org/10.5802/jedp.409 DO - 10.5802/jedp.409 LA - fr ID - JEDP_1991____A7_0 ER -
Luc Robbiano. Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques. Journées équations aux dérivées partielles (1991), article no. 7, 4 p. doi : 10.5802/jedp.409. https://jedp.centre-mersenne.org/articles/10.5802/jedp.409/
[1] S. Alinhac : Non unicité du problème de Cauchy, Annals of Mathematics, 117 (1983), 77-108. | MR: 85g:35011 | Zbl: 0516.35018
[2] C. Bardos, G. Lebeau, J. Rauch : Annexe livre de J.L. LIONS [7].
[3] L. Hörmander : Linear partial differential operators, Springer Verlag, Berlin, 1963. | Zbl: 0108.09301
[4] L. Hörmander : The analysis of linear partial differential operators, Springer Verlag. | Zbl: 0601.35001
[5] M.M. Lavrentèv, V.G. Romanov, S.P. Shishatskii : Ill-posed problems in mathematical physics and analysis, in «Translations of Mathematical Monograph», Vol. 64, Amer. Math. Soc., Providence, RI. | MR: 87g:65003 | Zbl: 0593.35003
[6] N. Lerner : Uniqueness for an ill-posed problem, Journal of Differential Equations, 71, (1988), 255-260. | MR: 89a:35126 | Zbl: 0699.35162
[7] J.L. Lions : Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, T. 1 : Contrôlabilité exacte, Masson. | Zbl: 0653.93003
[8] J. Rauch, M. Taylor : Penetrations in shadow regions and unique continuation properties in hyperbolic mixed problems, Indiana Univ. Math. J., 22, (1972), 277-285. | MR: 46 #2240 | Zbl: 0227.35064
[9] W. Symes : A trace theorem for solutions of the wave equation, and the remote determination of acoustic sources, Math. Meth. in the Appl. Sci., 5, (1983), 131-152. | MR: 84g:35165 | Zbl: 0528.35085
Cited by Sources: